This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every permutation group is a subgroup of the corresponding symmetric group. (Contributed by AV, 14-Mar-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pgrpsubgsymgbi.g | |- G = ( SymGrp ` A ) |
|
| pgrpsubgsymgbi.b | |- B = ( Base ` G ) |
||
| Assertion | pgrpsubgsymgbi | |- ( A e. V -> ( P e. ( SubGrp ` G ) <-> ( P C_ B /\ ( G |`s P ) e. Grp ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pgrpsubgsymgbi.g | |- G = ( SymGrp ` A ) |
|
| 2 | pgrpsubgsymgbi.b | |- B = ( Base ` G ) |
|
| 3 | 2 | issubg | |- ( P e. ( SubGrp ` G ) <-> ( G e. Grp /\ P C_ B /\ ( G |`s P ) e. Grp ) ) |
| 4 | 3anass | |- ( ( G e. Grp /\ P C_ B /\ ( G |`s P ) e. Grp ) <-> ( G e. Grp /\ ( P C_ B /\ ( G |`s P ) e. Grp ) ) ) |
|
| 5 | 3 4 | bitri | |- ( P e. ( SubGrp ` G ) <-> ( G e. Grp /\ ( P C_ B /\ ( G |`s P ) e. Grp ) ) ) |
| 6 | 1 | symggrp | |- ( A e. V -> G e. Grp ) |
| 7 | ibar | |- ( G e. Grp -> ( ( P C_ B /\ ( G |`s P ) e. Grp ) <-> ( G e. Grp /\ ( P C_ B /\ ( G |`s P ) e. Grp ) ) ) ) |
|
| 8 | 7 | bicomd | |- ( G e. Grp -> ( ( G e. Grp /\ ( P C_ B /\ ( G |`s P ) e. Grp ) ) <-> ( P C_ B /\ ( G |`s P ) e. Grp ) ) ) |
| 9 | 6 8 | syl | |- ( A e. V -> ( ( G e. Grp /\ ( P C_ B /\ ( G |`s P ) e. Grp ) ) <-> ( P C_ B /\ ( G |`s P ) e. Grp ) ) ) |
| 10 | 5 9 | bitrid | |- ( A e. V -> ( P e. ( SubGrp ` G ) <-> ( P C_ B /\ ( G |`s P ) e. Grp ) ) ) |