This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product of the primes taken to their respective powers reconstructs the original number. (Contributed by Mario Carneiro, 12-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | pcprod.1 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( 𝑛 ↑ ( 𝑛 pCnt 𝑁 ) ) , 1 ) ) | |
| Assertion | pcprod | ⊢ ( 𝑁 ∈ ℕ → ( seq 1 ( · , 𝐹 ) ‘ 𝑁 ) = 𝑁 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pcprod.1 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( 𝑛 ↑ ( 𝑛 pCnt 𝑁 ) ) , 1 ) ) | |
| 2 | pccl | ⊢ ( ( 𝑛 ∈ ℙ ∧ 𝑁 ∈ ℕ ) → ( 𝑛 pCnt 𝑁 ) ∈ ℕ0 ) | |
| 3 | 2 | ancoms | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ) → ( 𝑛 pCnt 𝑁 ) ∈ ℕ0 ) |
| 4 | 3 | ralrimiva | ⊢ ( 𝑁 ∈ ℕ → ∀ 𝑛 ∈ ℙ ( 𝑛 pCnt 𝑁 ) ∈ ℕ0 ) |
| 5 | 4 | adantl | ⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ ) → ∀ 𝑛 ∈ ℙ ( 𝑛 pCnt 𝑁 ) ∈ ℕ0 ) |
| 6 | simpr | ⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℕ ) | |
| 7 | simpl | ⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ ) → 𝑝 ∈ ℙ ) | |
| 8 | oveq1 | ⊢ ( 𝑛 = 𝑝 → ( 𝑛 pCnt 𝑁 ) = ( 𝑝 pCnt 𝑁 ) ) | |
| 9 | 1 5 6 7 8 | pcmpt | ⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ ) → ( 𝑝 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑁 ) ) = if ( 𝑝 ≤ 𝑁 , ( 𝑝 pCnt 𝑁 ) , 0 ) ) |
| 10 | iftrue | ⊢ ( 𝑝 ≤ 𝑁 → if ( 𝑝 ≤ 𝑁 , ( 𝑝 pCnt 𝑁 ) , 0 ) = ( 𝑝 pCnt 𝑁 ) ) | |
| 11 | 10 | adantl | ⊢ ( ( ( 𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ ) ∧ 𝑝 ≤ 𝑁 ) → if ( 𝑝 ≤ 𝑁 , ( 𝑝 pCnt 𝑁 ) , 0 ) = ( 𝑝 pCnt 𝑁 ) ) |
| 12 | iffalse | ⊢ ( ¬ 𝑝 ≤ 𝑁 → if ( 𝑝 ≤ 𝑁 , ( 𝑝 pCnt 𝑁 ) , 0 ) = 0 ) | |
| 13 | 12 | adantl | ⊢ ( ( ( 𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ ) ∧ ¬ 𝑝 ≤ 𝑁 ) → if ( 𝑝 ≤ 𝑁 , ( 𝑝 pCnt 𝑁 ) , 0 ) = 0 ) |
| 14 | prmz | ⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℤ ) | |
| 15 | dvdsle | ⊢ ( ( 𝑝 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑝 ∥ 𝑁 → 𝑝 ≤ 𝑁 ) ) | |
| 16 | 14 15 | sylan | ⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ ) → ( 𝑝 ∥ 𝑁 → 𝑝 ≤ 𝑁 ) ) |
| 17 | 16 | con3dimp | ⊢ ( ( ( 𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ ) ∧ ¬ 𝑝 ≤ 𝑁 ) → ¬ 𝑝 ∥ 𝑁 ) |
| 18 | pceq0 | ⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑝 pCnt 𝑁 ) = 0 ↔ ¬ 𝑝 ∥ 𝑁 ) ) | |
| 19 | 18 | adantr | ⊢ ( ( ( 𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ ) ∧ ¬ 𝑝 ≤ 𝑁 ) → ( ( 𝑝 pCnt 𝑁 ) = 0 ↔ ¬ 𝑝 ∥ 𝑁 ) ) |
| 20 | 17 19 | mpbird | ⊢ ( ( ( 𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ ) ∧ ¬ 𝑝 ≤ 𝑁 ) → ( 𝑝 pCnt 𝑁 ) = 0 ) |
| 21 | 13 20 | eqtr4d | ⊢ ( ( ( 𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ ) ∧ ¬ 𝑝 ≤ 𝑁 ) → if ( 𝑝 ≤ 𝑁 , ( 𝑝 pCnt 𝑁 ) , 0 ) = ( 𝑝 pCnt 𝑁 ) ) |
| 22 | 11 21 | pm2.61dan | ⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ ) → if ( 𝑝 ≤ 𝑁 , ( 𝑝 pCnt 𝑁 ) , 0 ) = ( 𝑝 pCnt 𝑁 ) ) |
| 23 | 9 22 | eqtrd | ⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ ) → ( 𝑝 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑁 ) ) = ( 𝑝 pCnt 𝑁 ) ) |
| 24 | 23 | ancoms | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑁 ) ) = ( 𝑝 pCnt 𝑁 ) ) |
| 25 | 24 | ralrimiva | ⊢ ( 𝑁 ∈ ℕ → ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑁 ) ) = ( 𝑝 pCnt 𝑁 ) ) |
| 26 | 1 4 | pcmptcl | ⊢ ( 𝑁 ∈ ℕ → ( 𝐹 : ℕ ⟶ ℕ ∧ seq 1 ( · , 𝐹 ) : ℕ ⟶ ℕ ) ) |
| 27 | 26 | simprd | ⊢ ( 𝑁 ∈ ℕ → seq 1 ( · , 𝐹 ) : ℕ ⟶ ℕ ) |
| 28 | ffvelcdm | ⊢ ( ( seq 1 ( · , 𝐹 ) : ℕ ⟶ ℕ ∧ 𝑁 ∈ ℕ ) → ( seq 1 ( · , 𝐹 ) ‘ 𝑁 ) ∈ ℕ ) | |
| 29 | 27 28 | mpancom | ⊢ ( 𝑁 ∈ ℕ → ( seq 1 ( · , 𝐹 ) ‘ 𝑁 ) ∈ ℕ ) |
| 30 | 29 | nnnn0d | ⊢ ( 𝑁 ∈ ℕ → ( seq 1 ( · , 𝐹 ) ‘ 𝑁 ) ∈ ℕ0 ) |
| 31 | nnnn0 | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) | |
| 32 | pc11 | ⊢ ( ( ( seq 1 ( · , 𝐹 ) ‘ 𝑁 ) ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( seq 1 ( · , 𝐹 ) ‘ 𝑁 ) = 𝑁 ↔ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑁 ) ) = ( 𝑝 pCnt 𝑁 ) ) ) | |
| 33 | 30 31 32 | syl2anc | ⊢ ( 𝑁 ∈ ℕ → ( ( seq 1 ( · , 𝐹 ) ‘ 𝑁 ) = 𝑁 ↔ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑁 ) ) = ( 𝑝 pCnt 𝑁 ) ) ) |
| 34 | 25 33 | mpbird | ⊢ ( 𝑁 ∈ ℕ → ( seq 1 ( · , 𝐹 ) ‘ 𝑁 ) = 𝑁 ) |