This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product of the primes taken to their respective powers reconstructs the original number. (Contributed by Mario Carneiro, 12-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | pcprod.1 | |- F = ( n e. NN |-> if ( n e. Prime , ( n ^ ( n pCnt N ) ) , 1 ) ) |
|
| Assertion | pcprod | |- ( N e. NN -> ( seq 1 ( x. , F ) ` N ) = N ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pcprod.1 | |- F = ( n e. NN |-> if ( n e. Prime , ( n ^ ( n pCnt N ) ) , 1 ) ) |
|
| 2 | pccl | |- ( ( n e. Prime /\ N e. NN ) -> ( n pCnt N ) e. NN0 ) |
|
| 3 | 2 | ancoms | |- ( ( N e. NN /\ n e. Prime ) -> ( n pCnt N ) e. NN0 ) |
| 4 | 3 | ralrimiva | |- ( N e. NN -> A. n e. Prime ( n pCnt N ) e. NN0 ) |
| 5 | 4 | adantl | |- ( ( p e. Prime /\ N e. NN ) -> A. n e. Prime ( n pCnt N ) e. NN0 ) |
| 6 | simpr | |- ( ( p e. Prime /\ N e. NN ) -> N e. NN ) |
|
| 7 | simpl | |- ( ( p e. Prime /\ N e. NN ) -> p e. Prime ) |
|
| 8 | oveq1 | |- ( n = p -> ( n pCnt N ) = ( p pCnt N ) ) |
|
| 9 | 1 5 6 7 8 | pcmpt | |- ( ( p e. Prime /\ N e. NN ) -> ( p pCnt ( seq 1 ( x. , F ) ` N ) ) = if ( p <_ N , ( p pCnt N ) , 0 ) ) |
| 10 | iftrue | |- ( p <_ N -> if ( p <_ N , ( p pCnt N ) , 0 ) = ( p pCnt N ) ) |
|
| 11 | 10 | adantl | |- ( ( ( p e. Prime /\ N e. NN ) /\ p <_ N ) -> if ( p <_ N , ( p pCnt N ) , 0 ) = ( p pCnt N ) ) |
| 12 | iffalse | |- ( -. p <_ N -> if ( p <_ N , ( p pCnt N ) , 0 ) = 0 ) |
|
| 13 | 12 | adantl | |- ( ( ( p e. Prime /\ N e. NN ) /\ -. p <_ N ) -> if ( p <_ N , ( p pCnt N ) , 0 ) = 0 ) |
| 14 | prmz | |- ( p e. Prime -> p e. ZZ ) |
|
| 15 | dvdsle | |- ( ( p e. ZZ /\ N e. NN ) -> ( p || N -> p <_ N ) ) |
|
| 16 | 14 15 | sylan | |- ( ( p e. Prime /\ N e. NN ) -> ( p || N -> p <_ N ) ) |
| 17 | 16 | con3dimp | |- ( ( ( p e. Prime /\ N e. NN ) /\ -. p <_ N ) -> -. p || N ) |
| 18 | pceq0 | |- ( ( p e. Prime /\ N e. NN ) -> ( ( p pCnt N ) = 0 <-> -. p || N ) ) |
|
| 19 | 18 | adantr | |- ( ( ( p e. Prime /\ N e. NN ) /\ -. p <_ N ) -> ( ( p pCnt N ) = 0 <-> -. p || N ) ) |
| 20 | 17 19 | mpbird | |- ( ( ( p e. Prime /\ N e. NN ) /\ -. p <_ N ) -> ( p pCnt N ) = 0 ) |
| 21 | 13 20 | eqtr4d | |- ( ( ( p e. Prime /\ N e. NN ) /\ -. p <_ N ) -> if ( p <_ N , ( p pCnt N ) , 0 ) = ( p pCnt N ) ) |
| 22 | 11 21 | pm2.61dan | |- ( ( p e. Prime /\ N e. NN ) -> if ( p <_ N , ( p pCnt N ) , 0 ) = ( p pCnt N ) ) |
| 23 | 9 22 | eqtrd | |- ( ( p e. Prime /\ N e. NN ) -> ( p pCnt ( seq 1 ( x. , F ) ` N ) ) = ( p pCnt N ) ) |
| 24 | 23 | ancoms | |- ( ( N e. NN /\ p e. Prime ) -> ( p pCnt ( seq 1 ( x. , F ) ` N ) ) = ( p pCnt N ) ) |
| 25 | 24 | ralrimiva | |- ( N e. NN -> A. p e. Prime ( p pCnt ( seq 1 ( x. , F ) ` N ) ) = ( p pCnt N ) ) |
| 26 | 1 4 | pcmptcl | |- ( N e. NN -> ( F : NN --> NN /\ seq 1 ( x. , F ) : NN --> NN ) ) |
| 27 | 26 | simprd | |- ( N e. NN -> seq 1 ( x. , F ) : NN --> NN ) |
| 28 | ffvelcdm | |- ( ( seq 1 ( x. , F ) : NN --> NN /\ N e. NN ) -> ( seq 1 ( x. , F ) ` N ) e. NN ) |
|
| 29 | 27 28 | mpancom | |- ( N e. NN -> ( seq 1 ( x. , F ) ` N ) e. NN ) |
| 30 | 29 | nnnn0d | |- ( N e. NN -> ( seq 1 ( x. , F ) ` N ) e. NN0 ) |
| 31 | nnnn0 | |- ( N e. NN -> N e. NN0 ) |
|
| 32 | pc11 | |- ( ( ( seq 1 ( x. , F ) ` N ) e. NN0 /\ N e. NN0 ) -> ( ( seq 1 ( x. , F ) ` N ) = N <-> A. p e. Prime ( p pCnt ( seq 1 ( x. , F ) ` N ) ) = ( p pCnt N ) ) ) |
|
| 33 | 30 31 32 | syl2anc | |- ( N e. NN -> ( ( seq 1 ( x. , F ) ` N ) = N <-> A. p e. Prime ( p pCnt ( seq 1 ( x. , F ) ` N ) ) = ( p pCnt N ) ) ) |
| 34 | 25 33 | mpbird | |- ( N e. NN -> ( seq 1 ( x. , F ) ` N ) = N ) |