This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a number greater than 1 divides another number, the second number increased by 1 is 1 modulo the first number. (Contributed by AV, 19-Mar-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | p1modz1 | ⊢ ( ( 𝑀 ∥ 𝐴 ∧ 1 < 𝑀 ) → ( ( 𝐴 + 1 ) mod 𝑀 ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdszrcl | ⊢ ( 𝑀 ∥ 𝐴 → ( 𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ ) ) | |
| 2 | 0red | ⊢ ( ( 𝑀 ∈ ℤ ∧ 1 < 𝑀 ) → 0 ∈ ℝ ) | |
| 3 | 1red | ⊢ ( ( 𝑀 ∈ ℤ ∧ 1 < 𝑀 ) → 1 ∈ ℝ ) | |
| 4 | zre | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ ) | |
| 5 | 4 | adantr | ⊢ ( ( 𝑀 ∈ ℤ ∧ 1 < 𝑀 ) → 𝑀 ∈ ℝ ) |
| 6 | 2 3 5 | 3jca | ⊢ ( ( 𝑀 ∈ ℤ ∧ 1 < 𝑀 ) → ( 0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑀 ∈ ℝ ) ) |
| 7 | 0lt1 | ⊢ 0 < 1 | |
| 8 | 7 | a1i | ⊢ ( 𝑀 ∈ ℤ → 0 < 1 ) |
| 9 | 8 | anim1i | ⊢ ( ( 𝑀 ∈ ℤ ∧ 1 < 𝑀 ) → ( 0 < 1 ∧ 1 < 𝑀 ) ) |
| 10 | lttr | ⊢ ( ( 0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑀 ∈ ℝ ) → ( ( 0 < 1 ∧ 1 < 𝑀 ) → 0 < 𝑀 ) ) | |
| 11 | 6 9 10 | sylc | ⊢ ( ( 𝑀 ∈ ℤ ∧ 1 < 𝑀 ) → 0 < 𝑀 ) |
| 12 | 11 | ex | ⊢ ( 𝑀 ∈ ℤ → ( 1 < 𝑀 → 0 < 𝑀 ) ) |
| 13 | elnnz | ⊢ ( 𝑀 ∈ ℕ ↔ ( 𝑀 ∈ ℤ ∧ 0 < 𝑀 ) ) | |
| 14 | 13 | simplbi2 | ⊢ ( 𝑀 ∈ ℤ → ( 0 < 𝑀 → 𝑀 ∈ ℕ ) ) |
| 15 | 12 14 | syld | ⊢ ( 𝑀 ∈ ℤ → ( 1 < 𝑀 → 𝑀 ∈ ℕ ) ) |
| 16 | 15 | adantr | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( 1 < 𝑀 → 𝑀 ∈ ℕ ) ) |
| 17 | 16 | imp | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ ) ∧ 1 < 𝑀 ) → 𝑀 ∈ ℕ ) |
| 18 | dvdsmod0 | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑀 ∥ 𝐴 ) → ( 𝐴 mod 𝑀 ) = 0 ) | |
| 19 | 17 18 | sylan | ⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ ) ∧ 1 < 𝑀 ) ∧ 𝑀 ∥ 𝐴 ) → ( 𝐴 mod 𝑀 ) = 0 ) |
| 20 | 19 | ex | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ ) ∧ 1 < 𝑀 ) → ( 𝑀 ∥ 𝐴 → ( 𝐴 mod 𝑀 ) = 0 ) ) |
| 21 | oveq1 | ⊢ ( ( 𝐴 mod 𝑀 ) = 0 → ( ( 𝐴 mod 𝑀 ) + 1 ) = ( 0 + 1 ) ) | |
| 22 | 0p1e1 | ⊢ ( 0 + 1 ) = 1 | |
| 23 | 21 22 | eqtrdi | ⊢ ( ( 𝐴 mod 𝑀 ) = 0 → ( ( 𝐴 mod 𝑀 ) + 1 ) = 1 ) |
| 24 | 23 | oveq1d | ⊢ ( ( 𝐴 mod 𝑀 ) = 0 → ( ( ( 𝐴 mod 𝑀 ) + 1 ) mod 𝑀 ) = ( 1 mod 𝑀 ) ) |
| 25 | 24 | adantl | ⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ ) ∧ 1 < 𝑀 ) ∧ ( 𝐴 mod 𝑀 ) = 0 ) → ( ( ( 𝐴 mod 𝑀 ) + 1 ) mod 𝑀 ) = ( 1 mod 𝑀 ) ) |
| 26 | zre | ⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℝ ) | |
| 27 | 26 | adantl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ ) → 𝐴 ∈ ℝ ) |
| 28 | 27 | adantr | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ ) ∧ 1 < 𝑀 ) → 𝐴 ∈ ℝ ) |
| 29 | 1red | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ ) ∧ 1 < 𝑀 ) → 1 ∈ ℝ ) | |
| 30 | 17 | nnrpd | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ ) ∧ 1 < 𝑀 ) → 𝑀 ∈ ℝ+ ) |
| 31 | 28 29 30 | 3jca | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ ) ∧ 1 < 𝑀 ) → ( 𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) ) |
| 32 | 31 | adantr | ⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ ) ∧ 1 < 𝑀 ) ∧ ( 𝐴 mod 𝑀 ) = 0 ) → ( 𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) ) |
| 33 | modaddmod | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( ( ( 𝐴 mod 𝑀 ) + 1 ) mod 𝑀 ) = ( ( 𝐴 + 1 ) mod 𝑀 ) ) | |
| 34 | 32 33 | syl | ⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ ) ∧ 1 < 𝑀 ) ∧ ( 𝐴 mod 𝑀 ) = 0 ) → ( ( ( 𝐴 mod 𝑀 ) + 1 ) mod 𝑀 ) = ( ( 𝐴 + 1 ) mod 𝑀 ) ) |
| 35 | 4 | adantr | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ ) → 𝑀 ∈ ℝ ) |
| 36 | 1mod | ⊢ ( ( 𝑀 ∈ ℝ ∧ 1 < 𝑀 ) → ( 1 mod 𝑀 ) = 1 ) | |
| 37 | 35 36 | sylan | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ ) ∧ 1 < 𝑀 ) → ( 1 mod 𝑀 ) = 1 ) |
| 38 | 37 | adantr | ⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ ) ∧ 1 < 𝑀 ) ∧ ( 𝐴 mod 𝑀 ) = 0 ) → ( 1 mod 𝑀 ) = 1 ) |
| 39 | 25 34 38 | 3eqtr3d | ⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ ) ∧ 1 < 𝑀 ) ∧ ( 𝐴 mod 𝑀 ) = 0 ) → ( ( 𝐴 + 1 ) mod 𝑀 ) = 1 ) |
| 40 | 39 | ex | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ ) ∧ 1 < 𝑀 ) → ( ( 𝐴 mod 𝑀 ) = 0 → ( ( 𝐴 + 1 ) mod 𝑀 ) = 1 ) ) |
| 41 | 20 40 | syld | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ ) ∧ 1 < 𝑀 ) → ( 𝑀 ∥ 𝐴 → ( ( 𝐴 + 1 ) mod 𝑀 ) = 1 ) ) |
| 42 | 41 | ex | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( 1 < 𝑀 → ( 𝑀 ∥ 𝐴 → ( ( 𝐴 + 1 ) mod 𝑀 ) = 1 ) ) ) |
| 43 | 42 | com23 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( 𝑀 ∥ 𝐴 → ( 1 < 𝑀 → ( ( 𝐴 + 1 ) mod 𝑀 ) = 1 ) ) ) |
| 44 | 1 43 | mpcom | ⊢ ( 𝑀 ∥ 𝐴 → ( 1 < 𝑀 → ( ( 𝐴 + 1 ) mod 𝑀 ) = 1 ) ) |
| 45 | 44 | imp | ⊢ ( ( 𝑀 ∥ 𝐴 ∧ 1 < 𝑀 ) → ( ( 𝐴 + 1 ) mod 𝑀 ) = 1 ) |