This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a number greater than 1 divides another number, the second number increased by 1 is 1 modulo the first number. (Contributed by AV, 19-Mar-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | p1modz1 | |- ( ( M || A /\ 1 < M ) -> ( ( A + 1 ) mod M ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdszrcl | |- ( M || A -> ( M e. ZZ /\ A e. ZZ ) ) |
|
| 2 | 0red | |- ( ( M e. ZZ /\ 1 < M ) -> 0 e. RR ) |
|
| 3 | 1red | |- ( ( M e. ZZ /\ 1 < M ) -> 1 e. RR ) |
|
| 4 | zre | |- ( M e. ZZ -> M e. RR ) |
|
| 5 | 4 | adantr | |- ( ( M e. ZZ /\ 1 < M ) -> M e. RR ) |
| 6 | 2 3 5 | 3jca | |- ( ( M e. ZZ /\ 1 < M ) -> ( 0 e. RR /\ 1 e. RR /\ M e. RR ) ) |
| 7 | 0lt1 | |- 0 < 1 |
|
| 8 | 7 | a1i | |- ( M e. ZZ -> 0 < 1 ) |
| 9 | 8 | anim1i | |- ( ( M e. ZZ /\ 1 < M ) -> ( 0 < 1 /\ 1 < M ) ) |
| 10 | lttr | |- ( ( 0 e. RR /\ 1 e. RR /\ M e. RR ) -> ( ( 0 < 1 /\ 1 < M ) -> 0 < M ) ) |
|
| 11 | 6 9 10 | sylc | |- ( ( M e. ZZ /\ 1 < M ) -> 0 < M ) |
| 12 | 11 | ex | |- ( M e. ZZ -> ( 1 < M -> 0 < M ) ) |
| 13 | elnnz | |- ( M e. NN <-> ( M e. ZZ /\ 0 < M ) ) |
|
| 14 | 13 | simplbi2 | |- ( M e. ZZ -> ( 0 < M -> M e. NN ) ) |
| 15 | 12 14 | syld | |- ( M e. ZZ -> ( 1 < M -> M e. NN ) ) |
| 16 | 15 | adantr | |- ( ( M e. ZZ /\ A e. ZZ ) -> ( 1 < M -> M e. NN ) ) |
| 17 | 16 | imp | |- ( ( ( M e. ZZ /\ A e. ZZ ) /\ 1 < M ) -> M e. NN ) |
| 18 | dvdsmod0 | |- ( ( M e. NN /\ M || A ) -> ( A mod M ) = 0 ) |
|
| 19 | 17 18 | sylan | |- ( ( ( ( M e. ZZ /\ A e. ZZ ) /\ 1 < M ) /\ M || A ) -> ( A mod M ) = 0 ) |
| 20 | 19 | ex | |- ( ( ( M e. ZZ /\ A e. ZZ ) /\ 1 < M ) -> ( M || A -> ( A mod M ) = 0 ) ) |
| 21 | oveq1 | |- ( ( A mod M ) = 0 -> ( ( A mod M ) + 1 ) = ( 0 + 1 ) ) |
|
| 22 | 0p1e1 | |- ( 0 + 1 ) = 1 |
|
| 23 | 21 22 | eqtrdi | |- ( ( A mod M ) = 0 -> ( ( A mod M ) + 1 ) = 1 ) |
| 24 | 23 | oveq1d | |- ( ( A mod M ) = 0 -> ( ( ( A mod M ) + 1 ) mod M ) = ( 1 mod M ) ) |
| 25 | 24 | adantl | |- ( ( ( ( M e. ZZ /\ A e. ZZ ) /\ 1 < M ) /\ ( A mod M ) = 0 ) -> ( ( ( A mod M ) + 1 ) mod M ) = ( 1 mod M ) ) |
| 26 | zre | |- ( A e. ZZ -> A e. RR ) |
|
| 27 | 26 | adantl | |- ( ( M e. ZZ /\ A e. ZZ ) -> A e. RR ) |
| 28 | 27 | adantr | |- ( ( ( M e. ZZ /\ A e. ZZ ) /\ 1 < M ) -> A e. RR ) |
| 29 | 1red | |- ( ( ( M e. ZZ /\ A e. ZZ ) /\ 1 < M ) -> 1 e. RR ) |
|
| 30 | 17 | nnrpd | |- ( ( ( M e. ZZ /\ A e. ZZ ) /\ 1 < M ) -> M e. RR+ ) |
| 31 | 28 29 30 | 3jca | |- ( ( ( M e. ZZ /\ A e. ZZ ) /\ 1 < M ) -> ( A e. RR /\ 1 e. RR /\ M e. RR+ ) ) |
| 32 | 31 | adantr | |- ( ( ( ( M e. ZZ /\ A e. ZZ ) /\ 1 < M ) /\ ( A mod M ) = 0 ) -> ( A e. RR /\ 1 e. RR /\ M e. RR+ ) ) |
| 33 | modaddmod | |- ( ( A e. RR /\ 1 e. RR /\ M e. RR+ ) -> ( ( ( A mod M ) + 1 ) mod M ) = ( ( A + 1 ) mod M ) ) |
|
| 34 | 32 33 | syl | |- ( ( ( ( M e. ZZ /\ A e. ZZ ) /\ 1 < M ) /\ ( A mod M ) = 0 ) -> ( ( ( A mod M ) + 1 ) mod M ) = ( ( A + 1 ) mod M ) ) |
| 35 | 4 | adantr | |- ( ( M e. ZZ /\ A e. ZZ ) -> M e. RR ) |
| 36 | 1mod | |- ( ( M e. RR /\ 1 < M ) -> ( 1 mod M ) = 1 ) |
|
| 37 | 35 36 | sylan | |- ( ( ( M e. ZZ /\ A e. ZZ ) /\ 1 < M ) -> ( 1 mod M ) = 1 ) |
| 38 | 37 | adantr | |- ( ( ( ( M e. ZZ /\ A e. ZZ ) /\ 1 < M ) /\ ( A mod M ) = 0 ) -> ( 1 mod M ) = 1 ) |
| 39 | 25 34 38 | 3eqtr3d | |- ( ( ( ( M e. ZZ /\ A e. ZZ ) /\ 1 < M ) /\ ( A mod M ) = 0 ) -> ( ( A + 1 ) mod M ) = 1 ) |
| 40 | 39 | ex | |- ( ( ( M e. ZZ /\ A e. ZZ ) /\ 1 < M ) -> ( ( A mod M ) = 0 -> ( ( A + 1 ) mod M ) = 1 ) ) |
| 41 | 20 40 | syld | |- ( ( ( M e. ZZ /\ A e. ZZ ) /\ 1 < M ) -> ( M || A -> ( ( A + 1 ) mod M ) = 1 ) ) |
| 42 | 41 | ex | |- ( ( M e. ZZ /\ A e. ZZ ) -> ( 1 < M -> ( M || A -> ( ( A + 1 ) mod M ) = 1 ) ) ) |
| 43 | 42 | com23 | |- ( ( M e. ZZ /\ A e. ZZ ) -> ( M || A -> ( 1 < M -> ( ( A + 1 ) mod M ) = 1 ) ) ) |
| 44 | 1 43 | mpcom | |- ( M || A -> ( 1 < M -> ( ( A + 1 ) mod M ) = 1 ) ) |
| 45 | 44 | imp | |- ( ( M || A /\ 1 < M ) -> ( ( A + 1 ) mod M ) = 1 ) |