This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ovolshft . (Contributed by Mario Carneiro, 22-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ovolsca.1 | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) | |
| ovolsca.2 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) | ||
| ovolsca.3 | ⊢ ( 𝜑 → 𝐵 = { 𝑥 ∈ ℝ ∣ ( 𝐶 · 𝑥 ) ∈ 𝐴 } ) | ||
| ovolsca.4 | ⊢ ( 𝜑 → ( vol* ‘ 𝐴 ) ∈ ℝ ) | ||
| Assertion | ovolscalem2 | ⊢ ( 𝜑 → ( vol* ‘ 𝐵 ) ≤ ( ( vol* ‘ 𝐴 ) / 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovolsca.1 | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) | |
| 2 | ovolsca.2 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) | |
| 3 | ovolsca.3 | ⊢ ( 𝜑 → 𝐵 = { 𝑥 ∈ ℝ ∣ ( 𝐶 · 𝑥 ) ∈ 𝐴 } ) | |
| 4 | ovolsca.4 | ⊢ ( 𝜑 → ( vol* ‘ 𝐴 ) ∈ ℝ ) | |
| 5 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → 𝐴 ⊆ ℝ ) |
| 6 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( vol* ‘ 𝐴 ) ∈ ℝ ) |
| 7 | rpmulcl | ⊢ ( ( 𝐶 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ) → ( 𝐶 · 𝑦 ) ∈ ℝ+ ) | |
| 8 | 2 7 | sylan | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( 𝐶 · 𝑦 ) ∈ ℝ+ ) |
| 9 | eqid | ⊢ seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) | |
| 10 | 9 | ovolgelb | ⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ∧ ( 𝐶 · 𝑦 ) ∈ ℝ+ ) → ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 · 𝑦 ) ) ) ) |
| 11 | 5 6 8 10 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 · 𝑦 ) ) ) ) |
| 12 | 1 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 · 𝑦 ) ) ) ) ) → 𝐴 ⊆ ℝ ) |
| 13 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 · 𝑦 ) ) ) ) ) → 𝐶 ∈ ℝ+ ) |
| 14 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 · 𝑦 ) ) ) ) ) → 𝐵 = { 𝑥 ∈ ℝ ∣ ( 𝐶 · 𝑥 ) ∈ 𝐴 } ) |
| 15 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 · 𝑦 ) ) ) ) ) → ( vol* ‘ 𝐴 ) ∈ ℝ ) |
| 16 | 2fveq3 | ⊢ ( 𝑚 = 𝑛 → ( 1st ‘ ( 𝑓 ‘ 𝑚 ) ) = ( 1st ‘ ( 𝑓 ‘ 𝑛 ) ) ) | |
| 17 | 16 | oveq1d | ⊢ ( 𝑚 = 𝑛 → ( ( 1st ‘ ( 𝑓 ‘ 𝑚 ) ) / 𝐶 ) = ( ( 1st ‘ ( 𝑓 ‘ 𝑛 ) ) / 𝐶 ) ) |
| 18 | 2fveq3 | ⊢ ( 𝑚 = 𝑛 → ( 2nd ‘ ( 𝑓 ‘ 𝑚 ) ) = ( 2nd ‘ ( 𝑓 ‘ 𝑛 ) ) ) | |
| 19 | 18 | oveq1d | ⊢ ( 𝑚 = 𝑛 → ( ( 2nd ‘ ( 𝑓 ‘ 𝑚 ) ) / 𝐶 ) = ( ( 2nd ‘ ( 𝑓 ‘ 𝑛 ) ) / 𝐶 ) ) |
| 20 | 17 19 | opeq12d | ⊢ ( 𝑚 = 𝑛 → 〈 ( ( 1st ‘ ( 𝑓 ‘ 𝑚 ) ) / 𝐶 ) , ( ( 2nd ‘ ( 𝑓 ‘ 𝑚 ) ) / 𝐶 ) 〉 = 〈 ( ( 1st ‘ ( 𝑓 ‘ 𝑛 ) ) / 𝐶 ) , ( ( 2nd ‘ ( 𝑓 ‘ 𝑛 ) ) / 𝐶 ) 〉 ) |
| 21 | 20 | cbvmptv | ⊢ ( 𝑚 ∈ ℕ ↦ 〈 ( ( 1st ‘ ( 𝑓 ‘ 𝑚 ) ) / 𝐶 ) , ( ( 2nd ‘ ( 𝑓 ‘ 𝑚 ) ) / 𝐶 ) 〉 ) = ( 𝑛 ∈ ℕ ↦ 〈 ( ( 1st ‘ ( 𝑓 ‘ 𝑛 ) ) / 𝐶 ) , ( ( 2nd ‘ ( 𝑓 ‘ 𝑛 ) ) / 𝐶 ) 〉 ) |
| 22 | elmapi | ⊢ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) → 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) | |
| 23 | 22 | ad2antrl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 · 𝑦 ) ) ) ) ) → 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 24 | simprrl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 · 𝑦 ) ) ) ) ) → 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ) | |
| 25 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 · 𝑦 ) ) ) ) ) → 𝑦 ∈ ℝ+ ) | |
| 26 | simprrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 · 𝑦 ) ) ) ) ) → sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 · 𝑦 ) ) ) | |
| 27 | 12 13 14 15 9 21 23 24 25 26 | ovolscalem1 | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 · 𝑦 ) ) ) ) ) → ( vol* ‘ 𝐵 ) ≤ ( ( ( vol* ‘ 𝐴 ) / 𝐶 ) + 𝑦 ) ) |
| 28 | 11 27 | rexlimddv | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( vol* ‘ 𝐵 ) ≤ ( ( ( vol* ‘ 𝐴 ) / 𝐶 ) + 𝑦 ) ) |
| 29 | 28 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑦 ∈ ℝ+ ( vol* ‘ 𝐵 ) ≤ ( ( ( vol* ‘ 𝐴 ) / 𝐶 ) + 𝑦 ) ) |
| 30 | ssrab2 | ⊢ { 𝑥 ∈ ℝ ∣ ( 𝐶 · 𝑥 ) ∈ 𝐴 } ⊆ ℝ | |
| 31 | 3 30 | eqsstrdi | ⊢ ( 𝜑 → 𝐵 ⊆ ℝ ) |
| 32 | ovolcl | ⊢ ( 𝐵 ⊆ ℝ → ( vol* ‘ 𝐵 ) ∈ ℝ* ) | |
| 33 | 31 32 | syl | ⊢ ( 𝜑 → ( vol* ‘ 𝐵 ) ∈ ℝ* ) |
| 34 | 4 2 | rerpdivcld | ⊢ ( 𝜑 → ( ( vol* ‘ 𝐴 ) / 𝐶 ) ∈ ℝ ) |
| 35 | xralrple | ⊢ ( ( ( vol* ‘ 𝐵 ) ∈ ℝ* ∧ ( ( vol* ‘ 𝐴 ) / 𝐶 ) ∈ ℝ ) → ( ( vol* ‘ 𝐵 ) ≤ ( ( vol* ‘ 𝐴 ) / 𝐶 ) ↔ ∀ 𝑦 ∈ ℝ+ ( vol* ‘ 𝐵 ) ≤ ( ( ( vol* ‘ 𝐴 ) / 𝐶 ) + 𝑦 ) ) ) | |
| 36 | 33 34 35 | syl2anc | ⊢ ( 𝜑 → ( ( vol* ‘ 𝐵 ) ≤ ( ( vol* ‘ 𝐴 ) / 𝐶 ) ↔ ∀ 𝑦 ∈ ℝ+ ( vol* ‘ 𝐵 ) ≤ ( ( ( vol* ‘ 𝐴 ) / 𝐶 ) + 𝑦 ) ) ) |
| 37 | 29 36 | mpbird | ⊢ ( 𝜑 → ( vol* ‘ 𝐵 ) ≤ ( ( vol* ‘ 𝐴 ) / 𝐶 ) ) |