This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Lebesgue outer measure function respects scaling of sets by positive reals. (Contributed by Mario Carneiro, 6-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ovolsca.1 | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) | |
| ovolsca.2 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) | ||
| ovolsca.3 | ⊢ ( 𝜑 → 𝐵 = { 𝑥 ∈ ℝ ∣ ( 𝐶 · 𝑥 ) ∈ 𝐴 } ) | ||
| ovolsca.4 | ⊢ ( 𝜑 → ( vol* ‘ 𝐴 ) ∈ ℝ ) | ||
| Assertion | ovolsca | ⊢ ( 𝜑 → ( vol* ‘ 𝐵 ) = ( ( vol* ‘ 𝐴 ) / 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovolsca.1 | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) | |
| 2 | ovolsca.2 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) | |
| 3 | ovolsca.3 | ⊢ ( 𝜑 → 𝐵 = { 𝑥 ∈ ℝ ∣ ( 𝐶 · 𝑥 ) ∈ 𝐴 } ) | |
| 4 | ovolsca.4 | ⊢ ( 𝜑 → ( vol* ‘ 𝐴 ) ∈ ℝ ) | |
| 5 | 1 2 3 4 | ovolscalem2 | ⊢ ( 𝜑 → ( vol* ‘ 𝐵 ) ≤ ( ( vol* ‘ 𝐴 ) / 𝐶 ) ) |
| 6 | 4 | recnd | ⊢ ( 𝜑 → ( vol* ‘ 𝐴 ) ∈ ℂ ) |
| 7 | 2 | rpcnd | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 8 | 2 | rpne0d | ⊢ ( 𝜑 → 𝐶 ≠ 0 ) |
| 9 | 6 7 8 | divrecd | ⊢ ( 𝜑 → ( ( vol* ‘ 𝐴 ) / 𝐶 ) = ( ( vol* ‘ 𝐴 ) · ( 1 / 𝐶 ) ) ) |
| 10 | ssrab2 | ⊢ { 𝑥 ∈ ℝ ∣ ( 𝐶 · 𝑥 ) ∈ 𝐴 } ⊆ ℝ | |
| 11 | 3 10 | eqsstrdi | ⊢ ( 𝜑 → 𝐵 ⊆ ℝ ) |
| 12 | 2 | rpreccld | ⊢ ( 𝜑 → ( 1 / 𝐶 ) ∈ ℝ+ ) |
| 13 | 1 2 3 | sca2rab | ⊢ ( 𝜑 → 𝐴 = { 𝑦 ∈ ℝ ∣ ( ( 1 / 𝐶 ) · 𝑦 ) ∈ 𝐵 } ) |
| 14 | 4 2 | rerpdivcld | ⊢ ( 𝜑 → ( ( vol* ‘ 𝐴 ) / 𝐶 ) ∈ ℝ ) |
| 15 | ovollecl | ⊢ ( ( 𝐵 ⊆ ℝ ∧ ( ( vol* ‘ 𝐴 ) / 𝐶 ) ∈ ℝ ∧ ( vol* ‘ 𝐵 ) ≤ ( ( vol* ‘ 𝐴 ) / 𝐶 ) ) → ( vol* ‘ 𝐵 ) ∈ ℝ ) | |
| 16 | 11 14 5 15 | syl3anc | ⊢ ( 𝜑 → ( vol* ‘ 𝐵 ) ∈ ℝ ) |
| 17 | 11 12 13 16 | ovolscalem2 | ⊢ ( 𝜑 → ( vol* ‘ 𝐴 ) ≤ ( ( vol* ‘ 𝐵 ) / ( 1 / 𝐶 ) ) ) |
| 18 | 4 16 12 | lemuldivd | ⊢ ( 𝜑 → ( ( ( vol* ‘ 𝐴 ) · ( 1 / 𝐶 ) ) ≤ ( vol* ‘ 𝐵 ) ↔ ( vol* ‘ 𝐴 ) ≤ ( ( vol* ‘ 𝐵 ) / ( 1 / 𝐶 ) ) ) ) |
| 19 | 17 18 | mpbird | ⊢ ( 𝜑 → ( ( vol* ‘ 𝐴 ) · ( 1 / 𝐶 ) ) ≤ ( vol* ‘ 𝐵 ) ) |
| 20 | 9 19 | eqbrtrd | ⊢ ( 𝜑 → ( ( vol* ‘ 𝐴 ) / 𝐶 ) ≤ ( vol* ‘ 𝐵 ) ) |
| 21 | 16 14 | letri3d | ⊢ ( 𝜑 → ( ( vol* ‘ 𝐵 ) = ( ( vol* ‘ 𝐴 ) / 𝐶 ) ↔ ( ( vol* ‘ 𝐵 ) ≤ ( ( vol* ‘ 𝐴 ) / 𝐶 ) ∧ ( ( vol* ‘ 𝐴 ) / 𝐶 ) ≤ ( vol* ‘ 𝐵 ) ) ) ) |
| 22 | 5 20 21 | mpbir2and | ⊢ ( 𝜑 → ( vol* ‘ 𝐵 ) = ( ( vol* ‘ 𝐴 ) / 𝐶 ) ) |