This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If B is a scale of A by C , then A is a scale of B by 1 / C . (Contributed by Mario Carneiro, 22-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ovolsca.1 | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) | |
| ovolsca.2 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) | ||
| ovolsca.3 | ⊢ ( 𝜑 → 𝐵 = { 𝑥 ∈ ℝ ∣ ( 𝐶 · 𝑥 ) ∈ 𝐴 } ) | ||
| Assertion | sca2rab | ⊢ ( 𝜑 → 𝐴 = { 𝑦 ∈ ℝ ∣ ( ( 1 / 𝐶 ) · 𝑦 ) ∈ 𝐵 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovolsca.1 | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) | |
| 2 | ovolsca.2 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) | |
| 3 | ovolsca.3 | ⊢ ( 𝜑 → 𝐵 = { 𝑥 ∈ ℝ ∣ ( 𝐶 · 𝑥 ) ∈ 𝐴 } ) | |
| 4 | 1 | sseld | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐴 → 𝑦 ∈ ℝ ) ) |
| 5 | 4 | pm4.71rd | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐴 ↔ ( 𝑦 ∈ ℝ ∧ 𝑦 ∈ 𝐴 ) ) ) |
| 6 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 𝐵 = { 𝑥 ∈ ℝ ∣ ( 𝐶 · 𝑥 ) ∈ 𝐴 } ) |
| 7 | 6 | eleq2d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ( ( 1 / 𝐶 ) · 𝑦 ) ∈ 𝐵 ↔ ( ( 1 / 𝐶 ) · 𝑦 ) ∈ { 𝑥 ∈ ℝ ∣ ( 𝐶 · 𝑥 ) ∈ 𝐴 } ) ) |
| 8 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 𝐶 ∈ ℝ+ ) |
| 9 | 8 | rprecred | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 1 / 𝐶 ) ∈ ℝ ) |
| 10 | remulcl | ⊢ ( ( ( 1 / 𝐶 ) ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( 1 / 𝐶 ) · 𝑦 ) ∈ ℝ ) | |
| 11 | 9 10 | sylancom | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ( 1 / 𝐶 ) · 𝑦 ) ∈ ℝ ) |
| 12 | oveq2 | ⊢ ( 𝑥 = ( ( 1 / 𝐶 ) · 𝑦 ) → ( 𝐶 · 𝑥 ) = ( 𝐶 · ( ( 1 / 𝐶 ) · 𝑦 ) ) ) | |
| 13 | 12 | eleq1d | ⊢ ( 𝑥 = ( ( 1 / 𝐶 ) · 𝑦 ) → ( ( 𝐶 · 𝑥 ) ∈ 𝐴 ↔ ( 𝐶 · ( ( 1 / 𝐶 ) · 𝑦 ) ) ∈ 𝐴 ) ) |
| 14 | 13 | elrab3 | ⊢ ( ( ( 1 / 𝐶 ) · 𝑦 ) ∈ ℝ → ( ( ( 1 / 𝐶 ) · 𝑦 ) ∈ { 𝑥 ∈ ℝ ∣ ( 𝐶 · 𝑥 ) ∈ 𝐴 } ↔ ( 𝐶 · ( ( 1 / 𝐶 ) · 𝑦 ) ) ∈ 𝐴 ) ) |
| 15 | 11 14 | syl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ( ( 1 / 𝐶 ) · 𝑦 ) ∈ { 𝑥 ∈ ℝ ∣ ( 𝐶 · 𝑥 ) ∈ 𝐴 } ↔ ( 𝐶 · ( ( 1 / 𝐶 ) · 𝑦 ) ) ∈ 𝐴 ) ) |
| 16 | simpr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℝ ) | |
| 17 | 16 | recnd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℂ ) |
| 18 | 8 | rpcnd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 𝐶 ∈ ℂ ) |
| 19 | 8 | rpne0d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 𝐶 ≠ 0 ) |
| 20 | 17 18 19 | divrec2d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝑦 / 𝐶 ) = ( ( 1 / 𝐶 ) · 𝑦 ) ) |
| 21 | 20 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝐶 · ( 𝑦 / 𝐶 ) ) = ( 𝐶 · ( ( 1 / 𝐶 ) · 𝑦 ) ) ) |
| 22 | 17 18 19 | divcan2d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝐶 · ( 𝑦 / 𝐶 ) ) = 𝑦 ) |
| 23 | 21 22 | eqtr3d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝐶 · ( ( 1 / 𝐶 ) · 𝑦 ) ) = 𝑦 ) |
| 24 | 23 | eleq1d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ( 𝐶 · ( ( 1 / 𝐶 ) · 𝑦 ) ) ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) |
| 25 | 7 15 24 | 3bitrd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ( ( 1 / 𝐶 ) · 𝑦 ) ∈ 𝐵 ↔ 𝑦 ∈ 𝐴 ) ) |
| 26 | 25 | pm5.32da | ⊢ ( 𝜑 → ( ( 𝑦 ∈ ℝ ∧ ( ( 1 / 𝐶 ) · 𝑦 ) ∈ 𝐵 ) ↔ ( 𝑦 ∈ ℝ ∧ 𝑦 ∈ 𝐴 ) ) ) |
| 27 | 5 26 | bitr4d | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐴 ↔ ( 𝑦 ∈ ℝ ∧ ( ( 1 / 𝐶 ) · 𝑦 ) ∈ 𝐵 ) ) ) |
| 28 | 27 | eqabdv | ⊢ ( 𝜑 → 𝐴 = { 𝑦 ∣ ( 𝑦 ∈ ℝ ∧ ( ( 1 / 𝐶 ) · 𝑦 ) ∈ 𝐵 ) } ) |
| 29 | df-rab | ⊢ { 𝑦 ∈ ℝ ∣ ( ( 1 / 𝐶 ) · 𝑦 ) ∈ 𝐵 } = { 𝑦 ∣ ( 𝑦 ∈ ℝ ∧ ( ( 1 / 𝐶 ) · 𝑦 ) ∈ 𝐵 ) } | |
| 30 | 28 29 | eqtr4di | ⊢ ( 𝜑 → 𝐴 = { 𝑦 ∈ ℝ ∣ ( ( 1 / 𝐶 ) · 𝑦 ) ∈ 𝐵 } ) |