This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An open interval ( A , B ) is open. (Contributed by Mario Carneiro, 3-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ordttopon.3 | ⊢ 𝑋 = dom 𝑅 | |
| Assertion | ordtopn3 | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → { 𝑥 ∈ 𝑋 ∣ ( ¬ 𝑥 𝑅 𝐴 ∧ ¬ 𝐵 𝑅 𝑥 ) } ∈ ( ordTop ‘ 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordttopon.3 | ⊢ 𝑋 = dom 𝑅 | |
| 2 | inrab | ⊢ ( { 𝑥 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝐴 } ∩ { 𝑥 ∈ 𝑋 ∣ ¬ 𝐵 𝑅 𝑥 } ) = { 𝑥 ∈ 𝑋 ∣ ( ¬ 𝑥 𝑅 𝐴 ∧ ¬ 𝐵 𝑅 𝑥 ) } | |
| 3 | 1 | ordttopon | ⊢ ( 𝑅 ∈ 𝑉 → ( ordTop ‘ 𝑅 ) ∈ ( TopOn ‘ 𝑋 ) ) |
| 4 | 3 | 3ad2ant1 | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ordTop ‘ 𝑅 ) ∈ ( TopOn ‘ 𝑋 ) ) |
| 5 | topontop | ⊢ ( ( ordTop ‘ 𝑅 ) ∈ ( TopOn ‘ 𝑋 ) → ( ordTop ‘ 𝑅 ) ∈ Top ) | |
| 6 | 4 5 | syl | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ordTop ‘ 𝑅 ) ∈ Top ) |
| 7 | 1 | ordtopn1 | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ) → { 𝑥 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝐴 } ∈ ( ordTop ‘ 𝑅 ) ) |
| 8 | 7 | 3adant3 | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → { 𝑥 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝐴 } ∈ ( ordTop ‘ 𝑅 ) ) |
| 9 | 1 | ordtopn2 | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋 ) → { 𝑥 ∈ 𝑋 ∣ ¬ 𝐵 𝑅 𝑥 } ∈ ( ordTop ‘ 𝑅 ) ) |
| 10 | 9 | 3adant2 | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → { 𝑥 ∈ 𝑋 ∣ ¬ 𝐵 𝑅 𝑥 } ∈ ( ordTop ‘ 𝑅 ) ) |
| 11 | inopn | ⊢ ( ( ( ordTop ‘ 𝑅 ) ∈ Top ∧ { 𝑥 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝐴 } ∈ ( ordTop ‘ 𝑅 ) ∧ { 𝑥 ∈ 𝑋 ∣ ¬ 𝐵 𝑅 𝑥 } ∈ ( ordTop ‘ 𝑅 ) ) → ( { 𝑥 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝐴 } ∩ { 𝑥 ∈ 𝑋 ∣ ¬ 𝐵 𝑅 𝑥 } ) ∈ ( ordTop ‘ 𝑅 ) ) | |
| 12 | 6 8 10 11 | syl3anc | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( { 𝑥 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝐴 } ∩ { 𝑥 ∈ 𝑋 ∣ ¬ 𝐵 𝑅 𝑥 } ) ∈ ( ordTop ‘ 𝑅 ) ) |
| 13 | 2 12 | eqeltrrid | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → { 𝑥 ∈ 𝑋 ∣ ( ¬ 𝑥 𝑅 𝐴 ∧ ¬ 𝐵 𝑅 𝑥 ) } ∈ ( ordTop ‘ 𝑅 ) ) |