This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A downward ray ( -oo , P ] is closed. (Contributed by Mario Carneiro, 3-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ordttopon.3 | ⊢ 𝑋 = dom 𝑅 | |
| Assertion | ordtcld1 | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋 ) → { 𝑥 ∈ 𝑋 ∣ 𝑥 𝑅 𝑃 } ∈ ( Clsd ‘ ( ordTop ‘ 𝑅 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordttopon.3 | ⊢ 𝑋 = dom 𝑅 | |
| 2 | ssrab2 | ⊢ { 𝑥 ∈ 𝑋 ∣ 𝑥 𝑅 𝑃 } ⊆ 𝑋 | |
| 3 | 1 | ordttopon | ⊢ ( 𝑅 ∈ 𝑉 → ( ordTop ‘ 𝑅 ) ∈ ( TopOn ‘ 𝑋 ) ) |
| 4 | 3 | adantr | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋 ) → ( ordTop ‘ 𝑅 ) ∈ ( TopOn ‘ 𝑋 ) ) |
| 5 | toponuni | ⊢ ( ( ordTop ‘ 𝑅 ) ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ ( ordTop ‘ 𝑅 ) ) | |
| 6 | 4 5 | syl | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋 ) → 𝑋 = ∪ ( ordTop ‘ 𝑅 ) ) |
| 7 | 2 6 | sseqtrid | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋 ) → { 𝑥 ∈ 𝑋 ∣ 𝑥 𝑅 𝑃 } ⊆ ∪ ( ordTop ‘ 𝑅 ) ) |
| 8 | notrab | ⊢ ( 𝑋 ∖ { 𝑥 ∈ 𝑋 ∣ 𝑥 𝑅 𝑃 } ) = { 𝑥 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑃 } | |
| 9 | 6 | difeq1d | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋 ) → ( 𝑋 ∖ { 𝑥 ∈ 𝑋 ∣ 𝑥 𝑅 𝑃 } ) = ( ∪ ( ordTop ‘ 𝑅 ) ∖ { 𝑥 ∈ 𝑋 ∣ 𝑥 𝑅 𝑃 } ) ) |
| 10 | 8 9 | eqtr3id | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋 ) → { 𝑥 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑃 } = ( ∪ ( ordTop ‘ 𝑅 ) ∖ { 𝑥 ∈ 𝑋 ∣ 𝑥 𝑅 𝑃 } ) ) |
| 11 | 1 | ordtopn1 | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋 ) → { 𝑥 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑃 } ∈ ( ordTop ‘ 𝑅 ) ) |
| 12 | 10 11 | eqeltrrd | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋 ) → ( ∪ ( ordTop ‘ 𝑅 ) ∖ { 𝑥 ∈ 𝑋 ∣ 𝑥 𝑅 𝑃 } ) ∈ ( ordTop ‘ 𝑅 ) ) |
| 13 | topontop | ⊢ ( ( ordTop ‘ 𝑅 ) ∈ ( TopOn ‘ 𝑋 ) → ( ordTop ‘ 𝑅 ) ∈ Top ) | |
| 14 | eqid | ⊢ ∪ ( ordTop ‘ 𝑅 ) = ∪ ( ordTop ‘ 𝑅 ) | |
| 15 | 14 | iscld | ⊢ ( ( ordTop ‘ 𝑅 ) ∈ Top → ( { 𝑥 ∈ 𝑋 ∣ 𝑥 𝑅 𝑃 } ∈ ( Clsd ‘ ( ordTop ‘ 𝑅 ) ) ↔ ( { 𝑥 ∈ 𝑋 ∣ 𝑥 𝑅 𝑃 } ⊆ ∪ ( ordTop ‘ 𝑅 ) ∧ ( ∪ ( ordTop ‘ 𝑅 ) ∖ { 𝑥 ∈ 𝑋 ∣ 𝑥 𝑅 𝑃 } ) ∈ ( ordTop ‘ 𝑅 ) ) ) ) |
| 16 | 4 13 15 | 3syl | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋 ) → ( { 𝑥 ∈ 𝑋 ∣ 𝑥 𝑅 𝑃 } ∈ ( Clsd ‘ ( ordTop ‘ 𝑅 ) ) ↔ ( { 𝑥 ∈ 𝑋 ∣ 𝑥 𝑅 𝑃 } ⊆ ∪ ( ordTop ‘ 𝑅 ) ∧ ( ∪ ( ordTop ‘ 𝑅 ) ∖ { 𝑥 ∈ 𝑋 ∣ 𝑥 𝑅 𝑃 } ) ∈ ( ordTop ‘ 𝑅 ) ) ) ) |
| 17 | 7 12 16 | mpbir2and | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋 ) → { 𝑥 ∈ 𝑋 ∣ 𝑥 𝑅 𝑃 } ∈ ( Clsd ‘ ( ordTop ‘ 𝑅 ) ) ) |