This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An open interval ( A , B ) is open. (Contributed by Mario Carneiro, 3-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ordttopon.3 | |- X = dom R |
|
| Assertion | ordtopn3 | |- ( ( R e. V /\ A e. X /\ B e. X ) -> { x e. X | ( -. x R A /\ -. B R x ) } e. ( ordTop ` R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordttopon.3 | |- X = dom R |
|
| 2 | inrab | |- ( { x e. X | -. x R A } i^i { x e. X | -. B R x } ) = { x e. X | ( -. x R A /\ -. B R x ) } |
|
| 3 | 1 | ordttopon | |- ( R e. V -> ( ordTop ` R ) e. ( TopOn ` X ) ) |
| 4 | 3 | 3ad2ant1 | |- ( ( R e. V /\ A e. X /\ B e. X ) -> ( ordTop ` R ) e. ( TopOn ` X ) ) |
| 5 | topontop | |- ( ( ordTop ` R ) e. ( TopOn ` X ) -> ( ordTop ` R ) e. Top ) |
|
| 6 | 4 5 | syl | |- ( ( R e. V /\ A e. X /\ B e. X ) -> ( ordTop ` R ) e. Top ) |
| 7 | 1 | ordtopn1 | |- ( ( R e. V /\ A e. X ) -> { x e. X | -. x R A } e. ( ordTop ` R ) ) |
| 8 | 7 | 3adant3 | |- ( ( R e. V /\ A e. X /\ B e. X ) -> { x e. X | -. x R A } e. ( ordTop ` R ) ) |
| 9 | 1 | ordtopn2 | |- ( ( R e. V /\ B e. X ) -> { x e. X | -. B R x } e. ( ordTop ` R ) ) |
| 10 | 9 | 3adant2 | |- ( ( R e. V /\ A e. X /\ B e. X ) -> { x e. X | -. B R x } e. ( ordTop ` R ) ) |
| 11 | inopn | |- ( ( ( ordTop ` R ) e. Top /\ { x e. X | -. x R A } e. ( ordTop ` R ) /\ { x e. X | -. B R x } e. ( ordTop ` R ) ) -> ( { x e. X | -. x R A } i^i { x e. X | -. B R x } ) e. ( ordTop ` R ) ) |
|
| 12 | 6 8 10 11 | syl3anc | |- ( ( R e. V /\ A e. X /\ B e. X ) -> ( { x e. X | -. x R A } i^i { x e. X | -. B R x } ) e. ( ordTop ` R ) ) |
| 13 | 2 12 | eqeltrrid | |- ( ( R e. V /\ A e. X /\ B e. X ) -> { x e. X | ( -. x R A /\ -. B R x ) } e. ( ordTop ` R ) ) |