This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The order dual generates the same topology as the original order. (Contributed by Mario Carneiro, 3-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordtcnv | |- ( R e. PosetRel -> ( ordTop ` `' R ) = ( ordTop ` R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- dom R = dom R |
|
| 2 | 1 | psrn | |- ( R e. PosetRel -> dom R = ran R ) |
| 3 | 2 | eqcomd | |- ( R e. PosetRel -> ran R = dom R ) |
| 4 | 3 | sneqd | |- ( R e. PosetRel -> { ran R } = { dom R } ) |
| 5 | vex | |- y e. _V |
|
| 6 | vex | |- x e. _V |
|
| 7 | 5 6 | brcnv | |- ( y `' R x <-> x R y ) |
| 8 | 7 | a1i | |- ( R e. PosetRel -> ( y `' R x <-> x R y ) ) |
| 9 | 8 | notbid | |- ( R e. PosetRel -> ( -. y `' R x <-> -. x R y ) ) |
| 10 | 3 9 | rabeqbidv | |- ( R e. PosetRel -> { y e. ran R | -. y `' R x } = { y e. dom R | -. x R y } ) |
| 11 | 3 10 | mpteq12dv | |- ( R e. PosetRel -> ( x e. ran R |-> { y e. ran R | -. y `' R x } ) = ( x e. dom R |-> { y e. dom R | -. x R y } ) ) |
| 12 | 11 | rneqd | |- ( R e. PosetRel -> ran ( x e. ran R |-> { y e. ran R | -. y `' R x } ) = ran ( x e. dom R |-> { y e. dom R | -. x R y } ) ) |
| 13 | 6 5 | brcnv | |- ( x `' R y <-> y R x ) |
| 14 | 13 | a1i | |- ( R e. PosetRel -> ( x `' R y <-> y R x ) ) |
| 15 | 14 | notbid | |- ( R e. PosetRel -> ( -. x `' R y <-> -. y R x ) ) |
| 16 | 3 15 | rabeqbidv | |- ( R e. PosetRel -> { y e. ran R | -. x `' R y } = { y e. dom R | -. y R x } ) |
| 17 | 3 16 | mpteq12dv | |- ( R e. PosetRel -> ( x e. ran R |-> { y e. ran R | -. x `' R y } ) = ( x e. dom R |-> { y e. dom R | -. y R x } ) ) |
| 18 | 17 | rneqd | |- ( R e. PosetRel -> ran ( x e. ran R |-> { y e. ran R | -. x `' R y } ) = ran ( x e. dom R |-> { y e. dom R | -. y R x } ) ) |
| 19 | 12 18 | uneq12d | |- ( R e. PosetRel -> ( ran ( x e. ran R |-> { y e. ran R | -. y `' R x } ) u. ran ( x e. ran R |-> { y e. ran R | -. x `' R y } ) ) = ( ran ( x e. dom R |-> { y e. dom R | -. x R y } ) u. ran ( x e. dom R |-> { y e. dom R | -. y R x } ) ) ) |
| 20 | uncom | |- ( ran ( x e. dom R |-> { y e. dom R | -. x R y } ) u. ran ( x e. dom R |-> { y e. dom R | -. y R x } ) ) = ( ran ( x e. dom R |-> { y e. dom R | -. y R x } ) u. ran ( x e. dom R |-> { y e. dom R | -. x R y } ) ) |
|
| 21 | 19 20 | eqtrdi | |- ( R e. PosetRel -> ( ran ( x e. ran R |-> { y e. ran R | -. y `' R x } ) u. ran ( x e. ran R |-> { y e. ran R | -. x `' R y } ) ) = ( ran ( x e. dom R |-> { y e. dom R | -. y R x } ) u. ran ( x e. dom R |-> { y e. dom R | -. x R y } ) ) ) |
| 22 | 4 21 | uneq12d | |- ( R e. PosetRel -> ( { ran R } u. ( ran ( x e. ran R |-> { y e. ran R | -. y `' R x } ) u. ran ( x e. ran R |-> { y e. ran R | -. x `' R y } ) ) ) = ( { dom R } u. ( ran ( x e. dom R |-> { y e. dom R | -. y R x } ) u. ran ( x e. dom R |-> { y e. dom R | -. x R y } ) ) ) ) |
| 23 | 22 | fveq2d | |- ( R e. PosetRel -> ( fi ` ( { ran R } u. ( ran ( x e. ran R |-> { y e. ran R | -. y `' R x } ) u. ran ( x e. ran R |-> { y e. ran R | -. x `' R y } ) ) ) ) = ( fi ` ( { dom R } u. ( ran ( x e. dom R |-> { y e. dom R | -. y R x } ) u. ran ( x e. dom R |-> { y e. dom R | -. x R y } ) ) ) ) ) |
| 24 | 23 | fveq2d | |- ( R e. PosetRel -> ( topGen ` ( fi ` ( { ran R } u. ( ran ( x e. ran R |-> { y e. ran R | -. y `' R x } ) u. ran ( x e. ran R |-> { y e. ran R | -. x `' R y } ) ) ) ) ) = ( topGen ` ( fi ` ( { dom R } u. ( ran ( x e. dom R |-> { y e. dom R | -. y R x } ) u. ran ( x e. dom R |-> { y e. dom R | -. x R y } ) ) ) ) ) ) |
| 25 | cnvps | |- ( R e. PosetRel -> `' R e. PosetRel ) |
|
| 26 | df-rn | |- ran R = dom `' R |
|
| 27 | eqid | |- ran ( x e. ran R |-> { y e. ran R | -. y `' R x } ) = ran ( x e. ran R |-> { y e. ran R | -. y `' R x } ) |
|
| 28 | eqid | |- ran ( x e. ran R |-> { y e. ran R | -. x `' R y } ) = ran ( x e. ran R |-> { y e. ran R | -. x `' R y } ) |
|
| 29 | 26 27 28 | ordtval | |- ( `' R e. PosetRel -> ( ordTop ` `' R ) = ( topGen ` ( fi ` ( { ran R } u. ( ran ( x e. ran R |-> { y e. ran R | -. y `' R x } ) u. ran ( x e. ran R |-> { y e. ran R | -. x `' R y } ) ) ) ) ) ) |
| 30 | 25 29 | syl | |- ( R e. PosetRel -> ( ordTop ` `' R ) = ( topGen ` ( fi ` ( { ran R } u. ( ran ( x e. ran R |-> { y e. ran R | -. y `' R x } ) u. ran ( x e. ran R |-> { y e. ran R | -. x `' R y } ) ) ) ) ) ) |
| 31 | eqid | |- ran ( x e. dom R |-> { y e. dom R | -. y R x } ) = ran ( x e. dom R |-> { y e. dom R | -. y R x } ) |
|
| 32 | eqid | |- ran ( x e. dom R |-> { y e. dom R | -. x R y } ) = ran ( x e. dom R |-> { y e. dom R | -. x R y } ) |
|
| 33 | 1 31 32 | ordtval | |- ( R e. PosetRel -> ( ordTop ` R ) = ( topGen ` ( fi ` ( { dom R } u. ( ran ( x e. dom R |-> { y e. dom R | -. y R x } ) u. ran ( x e. dom R |-> { y e. dom R | -. x R y } ) ) ) ) ) ) |
| 34 | 24 30 33 | 3eqtr4d | |- ( R e. PosetRel -> ( ordTop ` `' R ) = ( ordTop ` R ) ) |