This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The converse of a poset is a poset. In the general case (`' R e. PosetRel -> R e. PosetRel ) ` is not true. See cnvpsb for a special case where the property holds. (Contributed by FL, 5-Jan-2009) (Proof shortened by Mario Carneiro, 3-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnvps | ⊢ ( 𝑅 ∈ PosetRel → ◡ 𝑅 ∈ PosetRel ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv | ⊢ Rel ◡ 𝑅 | |
| 2 | 1 | a1i | ⊢ ( 𝑅 ∈ PosetRel → Rel ◡ 𝑅 ) |
| 3 | cnvco | ⊢ ◡ ( 𝑅 ∘ 𝑅 ) = ( ◡ 𝑅 ∘ ◡ 𝑅 ) | |
| 4 | pstr2 | ⊢ ( 𝑅 ∈ PosetRel → ( 𝑅 ∘ 𝑅 ) ⊆ 𝑅 ) | |
| 5 | cnvss | ⊢ ( ( 𝑅 ∘ 𝑅 ) ⊆ 𝑅 → ◡ ( 𝑅 ∘ 𝑅 ) ⊆ ◡ 𝑅 ) | |
| 6 | 4 5 | syl | ⊢ ( 𝑅 ∈ PosetRel → ◡ ( 𝑅 ∘ 𝑅 ) ⊆ ◡ 𝑅 ) |
| 7 | 3 6 | eqsstrrid | ⊢ ( 𝑅 ∈ PosetRel → ( ◡ 𝑅 ∘ ◡ 𝑅 ) ⊆ ◡ 𝑅 ) |
| 8 | psrel | ⊢ ( 𝑅 ∈ PosetRel → Rel 𝑅 ) | |
| 9 | dfrel2 | ⊢ ( Rel 𝑅 ↔ ◡ ◡ 𝑅 = 𝑅 ) | |
| 10 | 8 9 | sylib | ⊢ ( 𝑅 ∈ PosetRel → ◡ ◡ 𝑅 = 𝑅 ) |
| 11 | 10 | ineq2d | ⊢ ( 𝑅 ∈ PosetRel → ( ◡ 𝑅 ∩ ◡ ◡ 𝑅 ) = ( ◡ 𝑅 ∩ 𝑅 ) ) |
| 12 | incom | ⊢ ( ◡ 𝑅 ∩ 𝑅 ) = ( 𝑅 ∩ ◡ 𝑅 ) | |
| 13 | 11 12 | eqtrdi | ⊢ ( 𝑅 ∈ PosetRel → ( ◡ 𝑅 ∩ ◡ ◡ 𝑅 ) = ( 𝑅 ∩ ◡ 𝑅 ) ) |
| 14 | psref2 | ⊢ ( 𝑅 ∈ PosetRel → ( 𝑅 ∩ ◡ 𝑅 ) = ( I ↾ ∪ ∪ 𝑅 ) ) | |
| 15 | relcnvfld | ⊢ ( Rel 𝑅 → ∪ ∪ 𝑅 = ∪ ∪ ◡ 𝑅 ) | |
| 16 | 8 15 | syl | ⊢ ( 𝑅 ∈ PosetRel → ∪ ∪ 𝑅 = ∪ ∪ ◡ 𝑅 ) |
| 17 | 16 | reseq2d | ⊢ ( 𝑅 ∈ PosetRel → ( I ↾ ∪ ∪ 𝑅 ) = ( I ↾ ∪ ∪ ◡ 𝑅 ) ) |
| 18 | 13 14 17 | 3eqtrd | ⊢ ( 𝑅 ∈ PosetRel → ( ◡ 𝑅 ∩ ◡ ◡ 𝑅 ) = ( I ↾ ∪ ∪ ◡ 𝑅 ) ) |
| 19 | cnvexg | ⊢ ( 𝑅 ∈ PosetRel → ◡ 𝑅 ∈ V ) | |
| 20 | isps | ⊢ ( ◡ 𝑅 ∈ V → ( ◡ 𝑅 ∈ PosetRel ↔ ( Rel ◡ 𝑅 ∧ ( ◡ 𝑅 ∘ ◡ 𝑅 ) ⊆ ◡ 𝑅 ∧ ( ◡ 𝑅 ∩ ◡ ◡ 𝑅 ) = ( I ↾ ∪ ∪ ◡ 𝑅 ) ) ) ) | |
| 21 | 19 20 | syl | ⊢ ( 𝑅 ∈ PosetRel → ( ◡ 𝑅 ∈ PosetRel ↔ ( Rel ◡ 𝑅 ∧ ( ◡ 𝑅 ∘ ◡ 𝑅 ) ⊆ ◡ 𝑅 ∧ ( ◡ 𝑅 ∩ ◡ ◡ 𝑅 ) = ( I ↾ ∪ ∪ ◡ 𝑅 ) ) ) ) |
| 22 | 2 7 18 21 | mpbir3and | ⊢ ( 𝑅 ∈ PosetRel → ◡ 𝑅 ∈ PosetRel ) |