This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Given an element A of the union of an ordinal B , suc A is an element of B itself. (Contributed by Scott Fenton, 28-Mar-2012) (Proof shortened by Mario Carneiro, 29-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordsucuniel | |- ( Ord B -> ( A e. U. B <-> suc A e. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orduni | |- ( Ord B -> Ord U. B ) |
|
| 2 | ordelord | |- ( ( Ord U. B /\ A e. U. B ) -> Ord A ) |
|
| 3 | 2 | ex | |- ( Ord U. B -> ( A e. U. B -> Ord A ) ) |
| 4 | 1 3 | syl | |- ( Ord B -> ( A e. U. B -> Ord A ) ) |
| 5 | ordelord | |- ( ( Ord B /\ suc A e. B ) -> Ord suc A ) |
|
| 6 | ordsuc | |- ( Ord A <-> Ord suc A ) |
|
| 7 | 5 6 | sylibr | |- ( ( Ord B /\ suc A e. B ) -> Ord A ) |
| 8 | 7 | ex | |- ( Ord B -> ( suc A e. B -> Ord A ) ) |
| 9 | ordsson | |- ( Ord B -> B C_ On ) |
|
| 10 | ordunisssuc | |- ( ( B C_ On /\ Ord A ) -> ( U. B C_ A <-> B C_ suc A ) ) |
|
| 11 | 9 10 | sylan | |- ( ( Ord B /\ Ord A ) -> ( U. B C_ A <-> B C_ suc A ) ) |
| 12 | ordtri1 | |- ( ( Ord U. B /\ Ord A ) -> ( U. B C_ A <-> -. A e. U. B ) ) |
|
| 13 | 1 12 | sylan | |- ( ( Ord B /\ Ord A ) -> ( U. B C_ A <-> -. A e. U. B ) ) |
| 14 | ordtri1 | |- ( ( Ord B /\ Ord suc A ) -> ( B C_ suc A <-> -. suc A e. B ) ) |
|
| 15 | 6 14 | sylan2b | |- ( ( Ord B /\ Ord A ) -> ( B C_ suc A <-> -. suc A e. B ) ) |
| 16 | 11 13 15 | 3bitr3d | |- ( ( Ord B /\ Ord A ) -> ( -. A e. U. B <-> -. suc A e. B ) ) |
| 17 | 16 | con4bid | |- ( ( Ord B /\ Ord A ) -> ( A e. U. B <-> suc A e. B ) ) |
| 18 | 17 | ex | |- ( Ord B -> ( Ord A -> ( A e. U. B <-> suc A e. B ) ) ) |
| 19 | 4 8 18 | pm5.21ndd | |- ( Ord B -> ( A e. U. B <-> suc A e. B ) ) |