This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The successor of the maximum (i.e. union) of two ordinals is the maximum of their successors. (Contributed by NM, 28-Nov-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordsucun | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → suc ( 𝐴 ∪ 𝐵 ) = ( suc 𝐴 ∪ suc 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordun | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → Ord ( 𝐴 ∪ 𝐵 ) ) | |
| 2 | ordsuc | ⊢ ( Ord ( 𝐴 ∪ 𝐵 ) ↔ Ord suc ( 𝐴 ∪ 𝐵 ) ) | |
| 3 | ordelon | ⊢ ( ( Ord suc ( 𝐴 ∪ 𝐵 ) ∧ 𝑥 ∈ suc ( 𝐴 ∪ 𝐵 ) ) → 𝑥 ∈ On ) | |
| 4 | 3 | ex | ⊢ ( Ord suc ( 𝐴 ∪ 𝐵 ) → ( 𝑥 ∈ suc ( 𝐴 ∪ 𝐵 ) → 𝑥 ∈ On ) ) |
| 5 | 2 4 | sylbi | ⊢ ( Ord ( 𝐴 ∪ 𝐵 ) → ( 𝑥 ∈ suc ( 𝐴 ∪ 𝐵 ) → 𝑥 ∈ On ) ) |
| 6 | 1 5 | syl | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝑥 ∈ suc ( 𝐴 ∪ 𝐵 ) → 𝑥 ∈ On ) ) |
| 7 | ordsuc | ⊢ ( Ord 𝐴 ↔ Ord suc 𝐴 ) | |
| 8 | ordsuc | ⊢ ( Ord 𝐵 ↔ Ord suc 𝐵 ) | |
| 9 | ordun | ⊢ ( ( Ord suc 𝐴 ∧ Ord suc 𝐵 ) → Ord ( suc 𝐴 ∪ suc 𝐵 ) ) | |
| 10 | ordelon | ⊢ ( ( Ord ( suc 𝐴 ∪ suc 𝐵 ) ∧ 𝑥 ∈ ( suc 𝐴 ∪ suc 𝐵 ) ) → 𝑥 ∈ On ) | |
| 11 | 10 | ex | ⊢ ( Ord ( suc 𝐴 ∪ suc 𝐵 ) → ( 𝑥 ∈ ( suc 𝐴 ∪ suc 𝐵 ) → 𝑥 ∈ On ) ) |
| 12 | 9 11 | syl | ⊢ ( ( Ord suc 𝐴 ∧ Ord suc 𝐵 ) → ( 𝑥 ∈ ( suc 𝐴 ∪ suc 𝐵 ) → 𝑥 ∈ On ) ) |
| 13 | 7 8 12 | syl2anb | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝑥 ∈ ( suc 𝐴 ∪ suc 𝐵 ) → 𝑥 ∈ On ) ) |
| 14 | ordssun | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝑥 ⊆ ( 𝐴 ∪ 𝐵 ) ↔ ( 𝑥 ⊆ 𝐴 ∨ 𝑥 ⊆ 𝐵 ) ) ) | |
| 15 | 14 | adantl | ⊢ ( ( 𝑥 ∈ On ∧ ( Ord 𝐴 ∧ Ord 𝐵 ) ) → ( 𝑥 ⊆ ( 𝐴 ∪ 𝐵 ) ↔ ( 𝑥 ⊆ 𝐴 ∨ 𝑥 ⊆ 𝐵 ) ) ) |
| 16 | ordsssuc | ⊢ ( ( 𝑥 ∈ On ∧ Ord ( 𝐴 ∪ 𝐵 ) ) → ( 𝑥 ⊆ ( 𝐴 ∪ 𝐵 ) ↔ 𝑥 ∈ suc ( 𝐴 ∪ 𝐵 ) ) ) | |
| 17 | 1 16 | sylan2 | ⊢ ( ( 𝑥 ∈ On ∧ ( Ord 𝐴 ∧ Ord 𝐵 ) ) → ( 𝑥 ⊆ ( 𝐴 ∪ 𝐵 ) ↔ 𝑥 ∈ suc ( 𝐴 ∪ 𝐵 ) ) ) |
| 18 | ordsssuc | ⊢ ( ( 𝑥 ∈ On ∧ Ord 𝐴 ) → ( 𝑥 ⊆ 𝐴 ↔ 𝑥 ∈ suc 𝐴 ) ) | |
| 19 | 18 | adantrr | ⊢ ( ( 𝑥 ∈ On ∧ ( Ord 𝐴 ∧ Ord 𝐵 ) ) → ( 𝑥 ⊆ 𝐴 ↔ 𝑥 ∈ suc 𝐴 ) ) |
| 20 | ordsssuc | ⊢ ( ( 𝑥 ∈ On ∧ Ord 𝐵 ) → ( 𝑥 ⊆ 𝐵 ↔ 𝑥 ∈ suc 𝐵 ) ) | |
| 21 | 20 | adantrl | ⊢ ( ( 𝑥 ∈ On ∧ ( Ord 𝐴 ∧ Ord 𝐵 ) ) → ( 𝑥 ⊆ 𝐵 ↔ 𝑥 ∈ suc 𝐵 ) ) |
| 22 | 19 21 | orbi12d | ⊢ ( ( 𝑥 ∈ On ∧ ( Ord 𝐴 ∧ Ord 𝐵 ) ) → ( ( 𝑥 ⊆ 𝐴 ∨ 𝑥 ⊆ 𝐵 ) ↔ ( 𝑥 ∈ suc 𝐴 ∨ 𝑥 ∈ suc 𝐵 ) ) ) |
| 23 | 15 17 22 | 3bitr3d | ⊢ ( ( 𝑥 ∈ On ∧ ( Ord 𝐴 ∧ Ord 𝐵 ) ) → ( 𝑥 ∈ suc ( 𝐴 ∪ 𝐵 ) ↔ ( 𝑥 ∈ suc 𝐴 ∨ 𝑥 ∈ suc 𝐵 ) ) ) |
| 24 | elun | ⊢ ( 𝑥 ∈ ( suc 𝐴 ∪ suc 𝐵 ) ↔ ( 𝑥 ∈ suc 𝐴 ∨ 𝑥 ∈ suc 𝐵 ) ) | |
| 25 | 23 24 | bitr4di | ⊢ ( ( 𝑥 ∈ On ∧ ( Ord 𝐴 ∧ Ord 𝐵 ) ) → ( 𝑥 ∈ suc ( 𝐴 ∪ 𝐵 ) ↔ 𝑥 ∈ ( suc 𝐴 ∪ suc 𝐵 ) ) ) |
| 26 | 25 | expcom | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝑥 ∈ On → ( 𝑥 ∈ suc ( 𝐴 ∪ 𝐵 ) ↔ 𝑥 ∈ ( suc 𝐴 ∪ suc 𝐵 ) ) ) ) |
| 27 | 6 13 26 | pm5.21ndd | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝑥 ∈ suc ( 𝐴 ∪ 𝐵 ) ↔ 𝑥 ∈ ( suc 𝐴 ∪ suc 𝐵 ) ) ) |
| 28 | 27 | eqrdv | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → suc ( 𝐴 ∪ 𝐵 ) = ( suc 𝐴 ∪ suc 𝐵 ) ) |