This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The maximum of two ordinals is equal to one of them. (Contributed by Mario Carneiro, 25-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordunpr | ⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐵 ∪ 𝐶 ) ∈ { 𝐵 , 𝐶 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni | ⊢ ( 𝐵 ∈ On → Ord 𝐵 ) | |
| 2 | eloni | ⊢ ( 𝐶 ∈ On → Ord 𝐶 ) | |
| 3 | ordtri2or2 | ⊢ ( ( Ord 𝐵 ∧ Ord 𝐶 ) → ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) | |
| 4 | 1 2 3 | syl2an | ⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) |
| 5 | 4 | orcomd | ⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐶 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐶 ) ) |
| 6 | ssequn2 | ⊢ ( 𝐶 ⊆ 𝐵 ↔ ( 𝐵 ∪ 𝐶 ) = 𝐵 ) | |
| 7 | ssequn1 | ⊢ ( 𝐵 ⊆ 𝐶 ↔ ( 𝐵 ∪ 𝐶 ) = 𝐶 ) | |
| 8 | 6 7 | orbi12i | ⊢ ( ( 𝐶 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐶 ) ↔ ( ( 𝐵 ∪ 𝐶 ) = 𝐵 ∨ ( 𝐵 ∪ 𝐶 ) = 𝐶 ) ) |
| 9 | 5 8 | sylib | ⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐵 ∪ 𝐶 ) = 𝐵 ∨ ( 𝐵 ∪ 𝐶 ) = 𝐶 ) ) |
| 10 | unexg | ⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐵 ∪ 𝐶 ) ∈ V ) | |
| 11 | elprg | ⊢ ( ( 𝐵 ∪ 𝐶 ) ∈ V → ( ( 𝐵 ∪ 𝐶 ) ∈ { 𝐵 , 𝐶 } ↔ ( ( 𝐵 ∪ 𝐶 ) = 𝐵 ∨ ( 𝐵 ∪ 𝐶 ) = 𝐶 ) ) ) | |
| 12 | 10 11 | syl | ⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐵 ∪ 𝐶 ) ∈ { 𝐵 , 𝐶 } ↔ ( ( 𝐵 ∪ 𝐶 ) = 𝐵 ∨ ( 𝐵 ∪ 𝐶 ) = 𝐶 ) ) ) |
| 13 | 9 12 | mpbird | ⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐵 ∪ 𝐶 ) ∈ { 𝐵 , 𝐶 } ) |