This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The maximum (i.e., union) of two ordinals is ordinal. Exercise 12 of TakeutiZaring p. 40. (Contributed by NM, 28-Nov-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordun | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → Ord ( 𝐴 ∪ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( 𝐴 ∪ 𝐵 ) = ( 𝐴 ∪ 𝐵 ) | |
| 2 | ordequn | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( ( 𝐴 ∪ 𝐵 ) = ( 𝐴 ∪ 𝐵 ) → ( ( 𝐴 ∪ 𝐵 ) = 𝐴 ∨ ( 𝐴 ∪ 𝐵 ) = 𝐵 ) ) ) | |
| 3 | 1 2 | mpi | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( ( 𝐴 ∪ 𝐵 ) = 𝐴 ∨ ( 𝐴 ∪ 𝐵 ) = 𝐵 ) ) |
| 4 | ordeq | ⊢ ( ( 𝐴 ∪ 𝐵 ) = 𝐴 → ( Ord ( 𝐴 ∪ 𝐵 ) ↔ Ord 𝐴 ) ) | |
| 5 | 4 | biimprcd | ⊢ ( Ord 𝐴 → ( ( 𝐴 ∪ 𝐵 ) = 𝐴 → Ord ( 𝐴 ∪ 𝐵 ) ) ) |
| 6 | ordeq | ⊢ ( ( 𝐴 ∪ 𝐵 ) = 𝐵 → ( Ord ( 𝐴 ∪ 𝐵 ) ↔ Ord 𝐵 ) ) | |
| 7 | 6 | biimprcd | ⊢ ( Ord 𝐵 → ( ( 𝐴 ∪ 𝐵 ) = 𝐵 → Ord ( 𝐴 ∪ 𝐵 ) ) ) |
| 8 | 5 7 | jaao | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( ( ( 𝐴 ∪ 𝐵 ) = 𝐴 ∨ ( 𝐴 ∪ 𝐵 ) = 𝐵 ) → Ord ( 𝐴 ∪ 𝐵 ) ) ) |
| 9 | 3 8 | mpd | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → Ord ( 𝐴 ∪ 𝐵 ) ) |