This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of a subclass of the maximum (i.e. union) of two ordinals. (Contributed by NM, 28-Nov-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordssun | ⊢ ( ( Ord 𝐵 ∧ Ord 𝐶 ) → ( 𝐴 ⊆ ( 𝐵 ∪ 𝐶 ) ↔ ( 𝐴 ⊆ 𝐵 ∨ 𝐴 ⊆ 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtri2or2 | ⊢ ( ( Ord 𝐵 ∧ Ord 𝐶 ) → ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) | |
| 2 | ssequn1 | ⊢ ( 𝐵 ⊆ 𝐶 ↔ ( 𝐵 ∪ 𝐶 ) = 𝐶 ) | |
| 3 | sseq2 | ⊢ ( ( 𝐵 ∪ 𝐶 ) = 𝐶 → ( 𝐴 ⊆ ( 𝐵 ∪ 𝐶 ) ↔ 𝐴 ⊆ 𝐶 ) ) | |
| 4 | 2 3 | sylbi | ⊢ ( 𝐵 ⊆ 𝐶 → ( 𝐴 ⊆ ( 𝐵 ∪ 𝐶 ) ↔ 𝐴 ⊆ 𝐶 ) ) |
| 5 | olc | ⊢ ( 𝐴 ⊆ 𝐶 → ( 𝐴 ⊆ 𝐵 ∨ 𝐴 ⊆ 𝐶 ) ) | |
| 6 | 4 5 | biimtrdi | ⊢ ( 𝐵 ⊆ 𝐶 → ( 𝐴 ⊆ ( 𝐵 ∪ 𝐶 ) → ( 𝐴 ⊆ 𝐵 ∨ 𝐴 ⊆ 𝐶 ) ) ) |
| 7 | ssequn2 | ⊢ ( 𝐶 ⊆ 𝐵 ↔ ( 𝐵 ∪ 𝐶 ) = 𝐵 ) | |
| 8 | sseq2 | ⊢ ( ( 𝐵 ∪ 𝐶 ) = 𝐵 → ( 𝐴 ⊆ ( 𝐵 ∪ 𝐶 ) ↔ 𝐴 ⊆ 𝐵 ) ) | |
| 9 | 7 8 | sylbi | ⊢ ( 𝐶 ⊆ 𝐵 → ( 𝐴 ⊆ ( 𝐵 ∪ 𝐶 ) ↔ 𝐴 ⊆ 𝐵 ) ) |
| 10 | orc | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐴 ⊆ 𝐵 ∨ 𝐴 ⊆ 𝐶 ) ) | |
| 11 | 9 10 | biimtrdi | ⊢ ( 𝐶 ⊆ 𝐵 → ( 𝐴 ⊆ ( 𝐵 ∪ 𝐶 ) → ( 𝐴 ⊆ 𝐵 ∨ 𝐴 ⊆ 𝐶 ) ) ) |
| 12 | 6 11 | jaoi | ⊢ ( ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) → ( 𝐴 ⊆ ( 𝐵 ∪ 𝐶 ) → ( 𝐴 ⊆ 𝐵 ∨ 𝐴 ⊆ 𝐶 ) ) ) |
| 13 | 1 12 | syl | ⊢ ( ( Ord 𝐵 ∧ Ord 𝐶 ) → ( 𝐴 ⊆ ( 𝐵 ∪ 𝐶 ) → ( 𝐴 ⊆ 𝐵 ∨ 𝐴 ⊆ 𝐶 ) ) ) |
| 14 | ssun | ⊢ ( ( 𝐴 ⊆ 𝐵 ∨ 𝐴 ⊆ 𝐶 ) → 𝐴 ⊆ ( 𝐵 ∪ 𝐶 ) ) | |
| 15 | 13 14 | impbid1 | ⊢ ( ( Ord 𝐵 ∧ Ord 𝐶 ) → ( 𝐴 ⊆ ( 𝐵 ∪ 𝐶 ) ↔ ( 𝐴 ⊆ 𝐵 ∨ 𝐴 ⊆ 𝐶 ) ) ) |