This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The successor of an ordinal class is an ordinal class. Remark 1.5 of Schloeder p. 1. (Contributed by NM, 6-Jun-1994) Extract and adapt from a subproof of onsuc . (Revised by BTernaryTau, 6-Jan-2025) (Proof shortened by BJ, 11-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordsuci | ⊢ ( Ord 𝐴 → Ord suc 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtr | ⊢ ( Ord 𝐴 → Tr 𝐴 ) | |
| 2 | suctr | ⊢ ( Tr 𝐴 → Tr suc 𝐴 ) | |
| 3 | 1 2 | syl | ⊢ ( Ord 𝐴 → Tr suc 𝐴 ) |
| 4 | df-suc | ⊢ suc 𝐴 = ( 𝐴 ∪ { 𝐴 } ) | |
| 5 | ordsson | ⊢ ( Ord 𝐴 → 𝐴 ⊆ On ) | |
| 6 | elon2 | ⊢ ( 𝐴 ∈ On ↔ ( Ord 𝐴 ∧ 𝐴 ∈ V ) ) | |
| 7 | snssi | ⊢ ( 𝐴 ∈ On → { 𝐴 } ⊆ On ) | |
| 8 | 6 7 | sylbir | ⊢ ( ( Ord 𝐴 ∧ 𝐴 ∈ V ) → { 𝐴 } ⊆ On ) |
| 9 | snprc | ⊢ ( ¬ 𝐴 ∈ V ↔ { 𝐴 } = ∅ ) | |
| 10 | 9 | biimpi | ⊢ ( ¬ 𝐴 ∈ V → { 𝐴 } = ∅ ) |
| 11 | 0ss | ⊢ ∅ ⊆ On | |
| 12 | 10 11 | eqsstrdi | ⊢ ( ¬ 𝐴 ∈ V → { 𝐴 } ⊆ On ) |
| 13 | 12 | adantl | ⊢ ( ( Ord 𝐴 ∧ ¬ 𝐴 ∈ V ) → { 𝐴 } ⊆ On ) |
| 14 | 8 13 | pm2.61dan | ⊢ ( Ord 𝐴 → { 𝐴 } ⊆ On ) |
| 15 | 5 14 | unssd | ⊢ ( Ord 𝐴 → ( 𝐴 ∪ { 𝐴 } ) ⊆ On ) |
| 16 | 4 15 | eqsstrid | ⊢ ( Ord 𝐴 → suc 𝐴 ⊆ On ) |
| 17 | ordon | ⊢ Ord On | |
| 18 | 17 | a1i | ⊢ ( Ord 𝐴 → Ord On ) |
| 19 | trssord | ⊢ ( ( Tr suc 𝐴 ∧ suc 𝐴 ⊆ On ∧ Ord On ) → Ord suc 𝐴 ) | |
| 20 | 3 16 18 19 | syl3anc | ⊢ ( Ord 𝐴 → Ord suc 𝐴 ) |