This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The successor of an ordinal class is an ordinal class. Remark 1.5 of Schloeder p. 1. (Contributed by NM, 6-Jun-1994) Extract and adapt from a subproof of onsuc . (Revised by BTernaryTau, 6-Jan-2025) (Proof shortened by BJ, 11-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordsuci | |- ( Ord A -> Ord suc A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtr | |- ( Ord A -> Tr A ) |
|
| 2 | suctr | |- ( Tr A -> Tr suc A ) |
|
| 3 | 1 2 | syl | |- ( Ord A -> Tr suc A ) |
| 4 | df-suc | |- suc A = ( A u. { A } ) |
|
| 5 | ordsson | |- ( Ord A -> A C_ On ) |
|
| 6 | elon2 | |- ( A e. On <-> ( Ord A /\ A e. _V ) ) |
|
| 7 | snssi | |- ( A e. On -> { A } C_ On ) |
|
| 8 | 6 7 | sylbir | |- ( ( Ord A /\ A e. _V ) -> { A } C_ On ) |
| 9 | snprc | |- ( -. A e. _V <-> { A } = (/) ) |
|
| 10 | 9 | biimpi | |- ( -. A e. _V -> { A } = (/) ) |
| 11 | 0ss | |- (/) C_ On |
|
| 12 | 10 11 | eqsstrdi | |- ( -. A e. _V -> { A } C_ On ) |
| 13 | 12 | adantl | |- ( ( Ord A /\ -. A e. _V ) -> { A } C_ On ) |
| 14 | 8 13 | pm2.61dan | |- ( Ord A -> { A } C_ On ) |
| 15 | 5 14 | unssd | |- ( Ord A -> ( A u. { A } ) C_ On ) |
| 16 | 4 15 | eqsstrid | |- ( Ord A -> suc A C_ On ) |
| 17 | ordon | |- Ord On |
|
| 18 | 17 | a1i | |- ( Ord A -> Ord On ) |
| 19 | trssord | |- ( ( Tr suc A /\ suc A C_ On /\ Ord On ) -> Ord suc A ) |
|
| 20 | 3 16 18 19 | syl3anc | |- ( Ord A -> Ord suc A ) |