This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ordinal number is an ordinal set. Part of Definition 1.2 of Schloeder p. 1. (Contributed by NM, 8-Feb-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elon2 | ⊢ ( 𝐴 ∈ On ↔ ( Ord 𝐴 ∧ 𝐴 ∈ V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex | ⊢ ( 𝐴 ∈ On → 𝐴 ∈ V ) | |
| 2 | elong | ⊢ ( 𝐴 ∈ V → ( 𝐴 ∈ On ↔ Ord 𝐴 ) ) | |
| 3 | 1 2 | biadanii | ⊢ ( 𝐴 ∈ On ↔ ( 𝐴 ∈ V ∧ Ord 𝐴 ) ) |
| 4 | 3 | biancomi | ⊢ ( 𝐴 ∈ On ↔ ( Ord 𝐴 ∧ 𝐴 ∈ V ) ) |