This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The successor of an ordinal class is an ordinal class. Remark 1.5 of Schloeder p. 1. (Contributed by NM, 6-Jun-1994) Extract and adapt from a subproof of onsuc . (Revised by BTernaryTau, 6-Jan-2025) (Proof shortened by BJ, 11-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordsuci |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtr | ||
| 2 | suctr | ||
| 3 | 1 2 | syl | |
| 4 | df-suc | ||
| 5 | ordsson | ||
| 6 | elon2 | ||
| 7 | snssi | ||
| 8 | 6 7 | sylbir | |
| 9 | snprc | ||
| 10 | 9 | biimpi | |
| 11 | 0ss | ||
| 12 | 10 11 | eqsstrdi | |
| 13 | 12 | adantl | |
| 14 | 8 13 | pm2.61dan | |
| 15 | 5 14 | unssd | |
| 16 | 4 15 | eqsstrid | |
| 17 | ordon | ||
| 18 | 17 | a1i | |
| 19 | trssord | ||
| 20 | 3 16 18 19 | syl3anc |