This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the successor of an ordinal number exists, it is an ordinal number. This variation of onsuc does not require ax-un . (Contributed by BTernaryTau, 30-Nov-2024) (Proof shortened by BJ, 11-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sucexeloni | ⊢ ( ( 𝐴 ∈ On ∧ suc 𝐴 ∈ 𝑉 ) → suc 𝐴 ∈ On ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni | ⊢ ( 𝐴 ∈ On → Ord 𝐴 ) | |
| 2 | ordsuci | ⊢ ( Ord 𝐴 → Ord suc 𝐴 ) | |
| 3 | 1 2 | syl | ⊢ ( 𝐴 ∈ On → Ord suc 𝐴 ) |
| 4 | elex | ⊢ ( suc 𝐴 ∈ 𝑉 → suc 𝐴 ∈ V ) | |
| 5 | elong | ⊢ ( suc 𝐴 ∈ V → ( suc 𝐴 ∈ On ↔ Ord suc 𝐴 ) ) | |
| 6 | 5 | biimparc | ⊢ ( ( Ord suc 𝐴 ∧ suc 𝐴 ∈ V ) → suc 𝐴 ∈ On ) |
| 7 | 3 4 6 | syl2an | ⊢ ( ( 𝐴 ∈ On ∧ suc 𝐴 ∈ 𝑉 ) → suc 𝐴 ∈ On ) |