This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If B is smaller than A , then it equals the intersection of the difference. Exercise 11 in TakeutiZaring p. 44. (Contributed by Andrew Salmon, 14-Nov-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordintdif | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ∧ ( 𝐴 ∖ 𝐵 ) ≠ ∅ ) → 𝐵 = ∩ ( 𝐴 ∖ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssdif0 | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ( 𝐴 ∖ 𝐵 ) = ∅ ) | |
| 2 | 1 | necon3bbii | ⊢ ( ¬ 𝐴 ⊆ 𝐵 ↔ ( 𝐴 ∖ 𝐵 ) ≠ ∅ ) |
| 3 | dfdif2 | ⊢ ( 𝐴 ∖ 𝐵 ) = { 𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐵 } | |
| 4 | 3 | inteqi | ⊢ ∩ ( 𝐴 ∖ 𝐵 ) = ∩ { 𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐵 } |
| 5 | ordtri1 | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴 ) ) | |
| 6 | 5 | con2bid | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐵 ∈ 𝐴 ↔ ¬ 𝐴 ⊆ 𝐵 ) ) |
| 7 | id | ⊢ ( Ord 𝐵 → Ord 𝐵 ) | |
| 8 | ordelord | ⊢ ( ( Ord 𝐴 ∧ 𝑥 ∈ 𝐴 ) → Ord 𝑥 ) | |
| 9 | ordtri1 | ⊢ ( ( Ord 𝐵 ∧ Ord 𝑥 ) → ( 𝐵 ⊆ 𝑥 ↔ ¬ 𝑥 ∈ 𝐵 ) ) | |
| 10 | 7 8 9 | syl2anr | ⊢ ( ( ( Ord 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ Ord 𝐵 ) → ( 𝐵 ⊆ 𝑥 ↔ ¬ 𝑥 ∈ 𝐵 ) ) |
| 11 | 10 | an32s | ⊢ ( ( ( Ord 𝐴 ∧ Ord 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 ⊆ 𝑥 ↔ ¬ 𝑥 ∈ 𝐵 ) ) |
| 12 | 11 | rabbidva | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → { 𝑥 ∈ 𝐴 ∣ 𝐵 ⊆ 𝑥 } = { 𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐵 } ) |
| 13 | 12 | inteqd | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ∩ { 𝑥 ∈ 𝐴 ∣ 𝐵 ⊆ 𝑥 } = ∩ { 𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐵 } ) |
| 14 | intmin | ⊢ ( 𝐵 ∈ 𝐴 → ∩ { 𝑥 ∈ 𝐴 ∣ 𝐵 ⊆ 𝑥 } = 𝐵 ) | |
| 15 | 13 14 | sylan9req | ⊢ ( ( ( Ord 𝐴 ∧ Ord 𝐵 ) ∧ 𝐵 ∈ 𝐴 ) → ∩ { 𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐵 } = 𝐵 ) |
| 16 | 15 | ex | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐵 ∈ 𝐴 → ∩ { 𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐵 } = 𝐵 ) ) |
| 17 | 6 16 | sylbird | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( ¬ 𝐴 ⊆ 𝐵 → ∩ { 𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐵 } = 𝐵 ) ) |
| 18 | 17 | 3impia | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ∧ ¬ 𝐴 ⊆ 𝐵 ) → ∩ { 𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐵 } = 𝐵 ) |
| 19 | 4 18 | eqtr2id | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ∧ ¬ 𝐴 ⊆ 𝐵 ) → 𝐵 = ∩ ( 𝐴 ∖ 𝐵 ) ) |
| 20 | 2 19 | syl3an3br | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ∧ ( 𝐴 ∖ 𝐵 ) ≠ ∅ ) → 𝐵 = ∩ ( 𝐴 ∖ 𝐵 ) ) |