This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If B is smaller than A , then it equals the intersection of the difference. Exercise 11 in TakeutiZaring p. 44. (Contributed by Andrew Salmon, 14-Nov-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordintdif | |- ( ( Ord A /\ Ord B /\ ( A \ B ) =/= (/) ) -> B = |^| ( A \ B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssdif0 | |- ( A C_ B <-> ( A \ B ) = (/) ) |
|
| 2 | 1 | necon3bbii | |- ( -. A C_ B <-> ( A \ B ) =/= (/) ) |
| 3 | dfdif2 | |- ( A \ B ) = { x e. A | -. x e. B } |
|
| 4 | 3 | inteqi | |- |^| ( A \ B ) = |^| { x e. A | -. x e. B } |
| 5 | ordtri1 | |- ( ( Ord A /\ Ord B ) -> ( A C_ B <-> -. B e. A ) ) |
|
| 6 | 5 | con2bid | |- ( ( Ord A /\ Ord B ) -> ( B e. A <-> -. A C_ B ) ) |
| 7 | id | |- ( Ord B -> Ord B ) |
|
| 8 | ordelord | |- ( ( Ord A /\ x e. A ) -> Ord x ) |
|
| 9 | ordtri1 | |- ( ( Ord B /\ Ord x ) -> ( B C_ x <-> -. x e. B ) ) |
|
| 10 | 7 8 9 | syl2anr | |- ( ( ( Ord A /\ x e. A ) /\ Ord B ) -> ( B C_ x <-> -. x e. B ) ) |
| 11 | 10 | an32s | |- ( ( ( Ord A /\ Ord B ) /\ x e. A ) -> ( B C_ x <-> -. x e. B ) ) |
| 12 | 11 | rabbidva | |- ( ( Ord A /\ Ord B ) -> { x e. A | B C_ x } = { x e. A | -. x e. B } ) |
| 13 | 12 | inteqd | |- ( ( Ord A /\ Ord B ) -> |^| { x e. A | B C_ x } = |^| { x e. A | -. x e. B } ) |
| 14 | intmin | |- ( B e. A -> |^| { x e. A | B C_ x } = B ) |
|
| 15 | 13 14 | sylan9req | |- ( ( ( Ord A /\ Ord B ) /\ B e. A ) -> |^| { x e. A | -. x e. B } = B ) |
| 16 | 15 | ex | |- ( ( Ord A /\ Ord B ) -> ( B e. A -> |^| { x e. A | -. x e. B } = B ) ) |
| 17 | 6 16 | sylbird | |- ( ( Ord A /\ Ord B ) -> ( -. A C_ B -> |^| { x e. A | -. x e. B } = B ) ) |
| 18 | 17 | 3impia | |- ( ( Ord A /\ Ord B /\ -. A C_ B ) -> |^| { x e. A | -. x e. B } = B ) |
| 19 | 4 18 | eqtr2id | |- ( ( Ord A /\ Ord B /\ -. A C_ B ) -> B = |^| ( A \ B ) ) |
| 20 | 2 19 | syl3an3br | |- ( ( Ord A /\ Ord B /\ ( A \ B ) =/= (/) ) -> B = |^| ( A \ B ) ) |