This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A graph represented as an extensible structure with vertices as base set and indexed edges is isomorphic to a hypergraph represented as ordered pair with the same vertices and edges. (Contributed by AV, 11-Nov-2022) (Revised by AV, 4-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opstrgric.g | ⊢ 𝐺 = 〈 𝑉 , 𝐸 〉 | |
| opstrgric.h | ⊢ 𝐻 = { 〈 ( Base ‘ ndx ) , 𝑉 〉 , 〈 ( .ef ‘ ndx ) , 𝐸 〉 } | ||
| Assertion | opstrgric | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → 𝐺 ≃𝑔𝑟 𝐻 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opstrgric.g | ⊢ 𝐺 = 〈 𝑉 , 𝐸 〉 | |
| 2 | opstrgric.h | ⊢ 𝐻 = { 〈 ( Base ‘ ndx ) , 𝑉 〉 , 〈 ( .ef ‘ ndx ) , 𝐸 〉 } | |
| 3 | simp1 | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → 𝐺 ∈ UHGraph ) | |
| 4 | prex | ⊢ { 〈 ( Base ‘ ndx ) , 𝑉 〉 , 〈 ( .ef ‘ ndx ) , 𝐸 〉 } ∈ V | |
| 5 | 2 4 | eqeltri | ⊢ 𝐻 ∈ V |
| 6 | 5 | a1i | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → 𝐻 ∈ V ) |
| 7 | opvtxfv | ⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → ( Vtx ‘ 〈 𝑉 , 𝐸 〉 ) = 𝑉 ) | |
| 8 | 7 | 3adant1 | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → ( Vtx ‘ 〈 𝑉 , 𝐸 〉 ) = 𝑉 ) |
| 9 | 1 | fveq2i | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 〈 𝑉 , 𝐸 〉 ) |
| 10 | 9 | a1i | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 〈 𝑉 , 𝐸 〉 ) ) |
| 11 | 2 | struct2grvtx | ⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → ( Vtx ‘ 𝐻 ) = 𝑉 ) |
| 12 | 11 | 3adant1 | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → ( Vtx ‘ 𝐻 ) = 𝑉 ) |
| 13 | 8 10 12 | 3eqtr4d | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐻 ) ) |
| 14 | opiedgfv | ⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → ( iEdg ‘ 〈 𝑉 , 𝐸 〉 ) = 𝐸 ) | |
| 15 | 14 | 3adant1 | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → ( iEdg ‘ 〈 𝑉 , 𝐸 〉 ) = 𝐸 ) |
| 16 | 1 | fveq2i | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 〈 𝑉 , 𝐸 〉 ) |
| 17 | 16 | a1i | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 〈 𝑉 , 𝐸 〉 ) ) |
| 18 | 2 | struct2griedg | ⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → ( iEdg ‘ 𝐻 ) = 𝐸 ) |
| 19 | 18 | 3adant1 | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → ( iEdg ‘ 𝐻 ) = 𝐸 ) |
| 20 | 15 17 19 | 3eqtr4d | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐻 ) ) |
| 21 | simpl | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) → 𝐺 ∈ UHGraph ) | |
| 22 | 21 | adantr | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ∧ ( ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐻 ) ∧ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐻 ) ) ) → 𝐺 ∈ UHGraph ) |
| 23 | simpr | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) → 𝐻 ∈ V ) | |
| 24 | 23 | adantr | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ∧ ( ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐻 ) ∧ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐻 ) ) ) → 𝐻 ∈ V ) |
| 25 | simpl | ⊢ ( ( ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐻 ) ∧ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐻 ) ) → ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐻 ) ) | |
| 26 | 25 | adantl | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ∧ ( ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐻 ) ∧ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐻 ) ) ) → ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐻 ) ) |
| 27 | simpr | ⊢ ( ( ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐻 ) ∧ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐻 ) ) → ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐻 ) ) | |
| 28 | 27 | adantl | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ∧ ( ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐻 ) ∧ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐻 ) ) ) → ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐻 ) ) |
| 29 | 22 24 26 28 | grimidvtxedg | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ∧ ( ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐻 ) ∧ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐻 ) ) ) → ( I ↾ ( Vtx ‘ 𝐺 ) ) ∈ ( 𝐺 GraphIso 𝐻 ) ) |
| 30 | brgrici | ⊢ ( ( I ↾ ( Vtx ‘ 𝐺 ) ) ∈ ( 𝐺 GraphIso 𝐻 ) → 𝐺 ≃𝑔𝑟 𝐻 ) | |
| 31 | 29 30 | syl | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ∧ ( ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐻 ) ∧ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐻 ) ) ) → 𝐺 ≃𝑔𝑟 𝐻 ) |
| 32 | 3 6 13 20 31 | syl22anc | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → 𝐺 ≃𝑔𝑟 𝐻 ) |