This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of indexed edges of a graph represented as an extensible structure with vertices as base set and indexed edges. (Contributed by AV, 23-Sep-2020) (Proof shortened by AV, 12-Nov-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | struct2grvtx.g | ⊢ 𝐺 = { 〈 ( Base ‘ ndx ) , 𝑉 〉 , 〈 ( .ef ‘ ndx ) , 𝐸 〉 } | |
| Assertion | struct2griedg | ⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → ( iEdg ‘ 𝐺 ) = 𝐸 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | struct2grvtx.g | ⊢ 𝐺 = { 〈 ( Base ‘ ndx ) , 𝑉 〉 , 〈 ( .ef ‘ ndx ) , 𝐸 〉 } | |
| 2 | 1 | struct2grstr | ⊢ 𝐺 Struct 〈 ( Base ‘ ndx ) , ( .ef ‘ ndx ) 〉 |
| 3 | 2 | a1i | ⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → 𝐺 Struct 〈 ( Base ‘ ndx ) , ( .ef ‘ ndx ) 〉 ) |
| 4 | simpl | ⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → 𝑉 ∈ 𝑋 ) | |
| 5 | simpr | ⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → 𝐸 ∈ 𝑌 ) | |
| 6 | 1 | eqimss2i | ⊢ { 〈 ( Base ‘ ndx ) , 𝑉 〉 , 〈 ( .ef ‘ ndx ) , 𝐸 〉 } ⊆ 𝐺 |
| 7 | 6 | a1i | ⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → { 〈 ( Base ‘ ndx ) , 𝑉 〉 , 〈 ( .ef ‘ ndx ) , 𝐸 〉 } ⊆ 𝐺 ) |
| 8 | 3 4 5 7 | structgrssiedg | ⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → ( iEdg ‘ 𝐺 ) = 𝐸 ) |