This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity relation restricted to the set of vertices of a graph is a graph isomorphism between the graph and a graph with the same vertices and edges. (Contributed by AV, 4-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grimidvtxsdg.g | ⊢ ( 𝜑 → 𝐺 ∈ UHGraph ) | |
| grimidvtxsdg.h | ⊢ ( 𝜑 → 𝐻 ∈ 𝑉 ) | ||
| grimidvtxsdg.v | ⊢ ( 𝜑 → ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐻 ) ) | ||
| grimidvtxsdg.e | ⊢ ( 𝜑 → ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐻 ) ) | ||
| Assertion | grimidvtxedg | ⊢ ( 𝜑 → ( I ↾ ( Vtx ‘ 𝐺 ) ) ∈ ( 𝐺 GraphIso 𝐻 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grimidvtxsdg.g | ⊢ ( 𝜑 → 𝐺 ∈ UHGraph ) | |
| 2 | grimidvtxsdg.h | ⊢ ( 𝜑 → 𝐻 ∈ 𝑉 ) | |
| 3 | grimidvtxsdg.v | ⊢ ( 𝜑 → ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐻 ) ) | |
| 4 | grimidvtxsdg.e | ⊢ ( 𝜑 → ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐻 ) ) | |
| 5 | f1oi | ⊢ ( I ↾ ( Vtx ‘ 𝐺 ) ) : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐺 ) | |
| 6 | 3 | f1oeq3d | ⊢ ( 𝜑 → ( ( I ↾ ( Vtx ‘ 𝐺 ) ) : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐺 ) ↔ ( I ↾ ( Vtx ‘ 𝐺 ) ) : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) ) |
| 7 | 5 6 | mpbii | ⊢ ( 𝜑 → ( I ↾ ( Vtx ‘ 𝐺 ) ) : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) |
| 8 | funi | ⊢ Fun I | |
| 9 | fvex | ⊢ ( iEdg ‘ 𝐺 ) ∈ V | |
| 10 | 9 | dmex | ⊢ dom ( iEdg ‘ 𝐺 ) ∈ V |
| 11 | resfunexg | ⊢ ( ( Fun I ∧ dom ( iEdg ‘ 𝐺 ) ∈ V ) → ( I ↾ dom ( iEdg ‘ 𝐺 ) ) ∈ V ) | |
| 12 | 8 10 11 | mp2an | ⊢ ( I ↾ dom ( iEdg ‘ 𝐺 ) ) ∈ V |
| 13 | 12 | a1i | ⊢ ( 𝜑 → ( I ↾ dom ( iEdg ‘ 𝐺 ) ) ∈ V ) |
| 14 | f1oi | ⊢ ( I ↾ dom ( iEdg ‘ 𝐺 ) ) : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐺 ) | |
| 15 | 4 | dmeqd | ⊢ ( 𝜑 → dom ( iEdg ‘ 𝐺 ) = dom ( iEdg ‘ 𝐻 ) ) |
| 16 | 15 | f1oeq3d | ⊢ ( 𝜑 → ( ( I ↾ dom ( iEdg ‘ 𝐺 ) ) : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐺 ) ↔ ( I ↾ dom ( iEdg ‘ 𝐺 ) ) : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ) |
| 17 | 14 16 | mpbii | ⊢ ( 𝜑 → ( I ↾ dom ( iEdg ‘ 𝐺 ) ) : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) |
| 18 | fvresi | ⊢ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) → ( ( I ↾ dom ( iEdg ‘ 𝐺 ) ) ‘ 𝑖 ) = 𝑖 ) | |
| 19 | 18 | adantl | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( I ↾ dom ( iEdg ‘ 𝐺 ) ) ‘ 𝑖 ) = 𝑖 ) |
| 20 | 19 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ ( ( I ↾ dom ( iEdg ‘ 𝐺 ) ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) |
| 21 | 4 | eqcomd | ⊢ ( 𝜑 → ( iEdg ‘ 𝐻 ) = ( iEdg ‘ 𝐺 ) ) |
| 22 | 21 | fveq1d | ⊢ ( 𝜑 → ( ( iEdg ‘ 𝐻 ) ‘ ( ( I ↾ dom ( iEdg ‘ 𝐺 ) ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐺 ) ‘ ( ( I ↾ dom ( iEdg ‘ 𝐺 ) ) ‘ 𝑖 ) ) ) |
| 23 | 22 | adantr | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( ( I ↾ dom ( iEdg ‘ 𝐺 ) ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐺 ) ‘ ( ( I ↾ dom ( iEdg ‘ 𝐺 ) ) ‘ 𝑖 ) ) ) |
| 24 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 25 | eqid | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) | |
| 26 | 24 25 | uhgrss | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ ( Vtx ‘ 𝐺 ) ) |
| 27 | 1 26 | sylan | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ ( Vtx ‘ 𝐺 ) ) |
| 28 | resiima | ⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ ( Vtx ‘ 𝐺 ) → ( ( I ↾ ( Vtx ‘ 𝐺 ) ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) | |
| 29 | 27 28 | syl | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( I ↾ ( Vtx ‘ 𝐺 ) ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) |
| 30 | 20 23 29 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( ( I ↾ dom ( iEdg ‘ 𝐺 ) ) ‘ 𝑖 ) ) = ( ( I ↾ ( Vtx ‘ 𝐺 ) ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) |
| 31 | 30 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( ( I ↾ dom ( iEdg ‘ 𝐺 ) ) ‘ 𝑖 ) ) = ( ( I ↾ ( Vtx ‘ 𝐺 ) ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) |
| 32 | 17 31 | jca | ⊢ ( 𝜑 → ( ( I ↾ dom ( iEdg ‘ 𝐺 ) ) : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( ( I ↾ dom ( iEdg ‘ 𝐺 ) ) ‘ 𝑖 ) ) = ( ( I ↾ ( Vtx ‘ 𝐺 ) ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) |
| 33 | f1oeq1 | ⊢ ( 𝑗 = ( I ↾ dom ( iEdg ‘ 𝐺 ) ) → ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ↔ ( I ↾ dom ( iEdg ‘ 𝐺 ) ) : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ) | |
| 34 | fveq1 | ⊢ ( 𝑗 = ( I ↾ dom ( iEdg ‘ 𝐺 ) ) → ( 𝑗 ‘ 𝑖 ) = ( ( I ↾ dom ( iEdg ‘ 𝐺 ) ) ‘ 𝑖 ) ) | |
| 35 | 34 | fveqeq2d | ⊢ ( 𝑗 = ( I ↾ dom ( iEdg ‘ 𝐺 ) ) → ( ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( ( I ↾ ( Vtx ‘ 𝐺 ) ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ↔ ( ( iEdg ‘ 𝐻 ) ‘ ( ( I ↾ dom ( iEdg ‘ 𝐺 ) ) ‘ 𝑖 ) ) = ( ( I ↾ ( Vtx ‘ 𝐺 ) ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) |
| 36 | 35 | ralbidv | ⊢ ( 𝑗 = ( I ↾ dom ( iEdg ‘ 𝐺 ) ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( ( I ↾ ( Vtx ‘ 𝐺 ) ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ↔ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( ( I ↾ dom ( iEdg ‘ 𝐺 ) ) ‘ 𝑖 ) ) = ( ( I ↾ ( Vtx ‘ 𝐺 ) ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) |
| 37 | 33 36 | anbi12d | ⊢ ( 𝑗 = ( I ↾ dom ( iEdg ‘ 𝐺 ) ) → ( ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( ( I ↾ ( Vtx ‘ 𝐺 ) ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ↔ ( ( I ↾ dom ( iEdg ‘ 𝐺 ) ) : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( ( I ↾ dom ( iEdg ‘ 𝐺 ) ) ‘ 𝑖 ) ) = ( ( I ↾ ( Vtx ‘ 𝐺 ) ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ) |
| 38 | 13 32 37 | spcedv | ⊢ ( 𝜑 → ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( ( I ↾ ( Vtx ‘ 𝐺 ) ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) |
| 39 | fvex | ⊢ ( Vtx ‘ 𝐺 ) ∈ V | |
| 40 | resfunexg | ⊢ ( ( Fun I ∧ ( Vtx ‘ 𝐺 ) ∈ V ) → ( I ↾ ( Vtx ‘ 𝐺 ) ) ∈ V ) | |
| 41 | 8 39 40 | mp2an | ⊢ ( I ↾ ( Vtx ‘ 𝐺 ) ) ∈ V |
| 42 | 41 | a1i | ⊢ ( 𝜑 → ( I ↾ ( Vtx ‘ 𝐺 ) ) ∈ V ) |
| 43 | eqid | ⊢ ( Vtx ‘ 𝐻 ) = ( Vtx ‘ 𝐻 ) | |
| 44 | eqid | ⊢ ( iEdg ‘ 𝐻 ) = ( iEdg ‘ 𝐻 ) | |
| 45 | 24 43 25 44 | isgrim | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ 𝑉 ∧ ( I ↾ ( Vtx ‘ 𝐺 ) ) ∈ V ) → ( ( I ↾ ( Vtx ‘ 𝐺 ) ) ∈ ( 𝐺 GraphIso 𝐻 ) ↔ ( ( I ↾ ( Vtx ‘ 𝐺 ) ) : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( ( I ↾ ( Vtx ‘ 𝐺 ) ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ) ) |
| 46 | 1 2 42 45 | syl3anc | ⊢ ( 𝜑 → ( ( I ↾ ( Vtx ‘ 𝐺 ) ) ∈ ( 𝐺 GraphIso 𝐻 ) ↔ ( ( I ↾ ( Vtx ‘ 𝐺 ) ) : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( ( I ↾ ( Vtx ‘ 𝐺 ) ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ) ) |
| 47 | 7 38 46 | mpbir2and | ⊢ ( 𝜑 → ( I ↾ ( Vtx ‘ 𝐺 ) ) ∈ ( 𝐺 GraphIso 𝐻 ) ) |