This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A graph represented as an extensible structure with vertices as base set and indexed edges is isomorphic to a hypergraph represented as ordered pair with the same vertices and edges. (Contributed by AV, 11-Nov-2022) (Revised by AV, 4-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opstrgric.g | |- G = <. V , E >. |
|
| opstrgric.h | |- H = { <. ( Base ` ndx ) , V >. , <. ( .ef ` ndx ) , E >. } |
||
| Assertion | opstrgric | |- ( ( G e. UHGraph /\ V e. X /\ E e. Y ) -> G ~=gr H ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opstrgric.g | |- G = <. V , E >. |
|
| 2 | opstrgric.h | |- H = { <. ( Base ` ndx ) , V >. , <. ( .ef ` ndx ) , E >. } |
|
| 3 | simp1 | |- ( ( G e. UHGraph /\ V e. X /\ E e. Y ) -> G e. UHGraph ) |
|
| 4 | prex | |- { <. ( Base ` ndx ) , V >. , <. ( .ef ` ndx ) , E >. } e. _V |
|
| 5 | 2 4 | eqeltri | |- H e. _V |
| 6 | 5 | a1i | |- ( ( G e. UHGraph /\ V e. X /\ E e. Y ) -> H e. _V ) |
| 7 | opvtxfv | |- ( ( V e. X /\ E e. Y ) -> ( Vtx ` <. V , E >. ) = V ) |
|
| 8 | 7 | 3adant1 | |- ( ( G e. UHGraph /\ V e. X /\ E e. Y ) -> ( Vtx ` <. V , E >. ) = V ) |
| 9 | 1 | fveq2i | |- ( Vtx ` G ) = ( Vtx ` <. V , E >. ) |
| 10 | 9 | a1i | |- ( ( G e. UHGraph /\ V e. X /\ E e. Y ) -> ( Vtx ` G ) = ( Vtx ` <. V , E >. ) ) |
| 11 | 2 | struct2grvtx | |- ( ( V e. X /\ E e. Y ) -> ( Vtx ` H ) = V ) |
| 12 | 11 | 3adant1 | |- ( ( G e. UHGraph /\ V e. X /\ E e. Y ) -> ( Vtx ` H ) = V ) |
| 13 | 8 10 12 | 3eqtr4d | |- ( ( G e. UHGraph /\ V e. X /\ E e. Y ) -> ( Vtx ` G ) = ( Vtx ` H ) ) |
| 14 | opiedgfv | |- ( ( V e. X /\ E e. Y ) -> ( iEdg ` <. V , E >. ) = E ) |
|
| 15 | 14 | 3adant1 | |- ( ( G e. UHGraph /\ V e. X /\ E e. Y ) -> ( iEdg ` <. V , E >. ) = E ) |
| 16 | 1 | fveq2i | |- ( iEdg ` G ) = ( iEdg ` <. V , E >. ) |
| 17 | 16 | a1i | |- ( ( G e. UHGraph /\ V e. X /\ E e. Y ) -> ( iEdg ` G ) = ( iEdg ` <. V , E >. ) ) |
| 18 | 2 | struct2griedg | |- ( ( V e. X /\ E e. Y ) -> ( iEdg ` H ) = E ) |
| 19 | 18 | 3adant1 | |- ( ( G e. UHGraph /\ V e. X /\ E e. Y ) -> ( iEdg ` H ) = E ) |
| 20 | 15 17 19 | 3eqtr4d | |- ( ( G e. UHGraph /\ V e. X /\ E e. Y ) -> ( iEdg ` G ) = ( iEdg ` H ) ) |
| 21 | simpl | |- ( ( G e. UHGraph /\ H e. _V ) -> G e. UHGraph ) |
|
| 22 | 21 | adantr | |- ( ( ( G e. UHGraph /\ H e. _V ) /\ ( ( Vtx ` G ) = ( Vtx ` H ) /\ ( iEdg ` G ) = ( iEdg ` H ) ) ) -> G e. UHGraph ) |
| 23 | simpr | |- ( ( G e. UHGraph /\ H e. _V ) -> H e. _V ) |
|
| 24 | 23 | adantr | |- ( ( ( G e. UHGraph /\ H e. _V ) /\ ( ( Vtx ` G ) = ( Vtx ` H ) /\ ( iEdg ` G ) = ( iEdg ` H ) ) ) -> H e. _V ) |
| 25 | simpl | |- ( ( ( Vtx ` G ) = ( Vtx ` H ) /\ ( iEdg ` G ) = ( iEdg ` H ) ) -> ( Vtx ` G ) = ( Vtx ` H ) ) |
|
| 26 | 25 | adantl | |- ( ( ( G e. UHGraph /\ H e. _V ) /\ ( ( Vtx ` G ) = ( Vtx ` H ) /\ ( iEdg ` G ) = ( iEdg ` H ) ) ) -> ( Vtx ` G ) = ( Vtx ` H ) ) |
| 27 | simpr | |- ( ( ( Vtx ` G ) = ( Vtx ` H ) /\ ( iEdg ` G ) = ( iEdg ` H ) ) -> ( iEdg ` G ) = ( iEdg ` H ) ) |
|
| 28 | 27 | adantl | |- ( ( ( G e. UHGraph /\ H e. _V ) /\ ( ( Vtx ` G ) = ( Vtx ` H ) /\ ( iEdg ` G ) = ( iEdg ` H ) ) ) -> ( iEdg ` G ) = ( iEdg ` H ) ) |
| 29 | 22 24 26 28 | grimidvtxedg | |- ( ( ( G e. UHGraph /\ H e. _V ) /\ ( ( Vtx ` G ) = ( Vtx ` H ) /\ ( iEdg ` G ) = ( iEdg ` H ) ) ) -> ( _I |` ( Vtx ` G ) ) e. ( G GraphIso H ) ) |
| 30 | brgrici | |- ( ( _I |` ( Vtx ` G ) ) e. ( G GraphIso H ) -> G ~=gr H ) |
|
| 31 | 29 30 | syl | |- ( ( ( G e. UHGraph /\ H e. _V ) /\ ( ( Vtx ` G ) = ( Vtx ` H ) /\ ( iEdg ` G ) = ( iEdg ` H ) ) ) -> G ~=gr H ) |
| 32 | 3 6 13 20 31 | syl22anc | |- ( ( G e. UHGraph /\ V e. X /\ E e. Y ) -> G ~=gr H ) |