This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Bidirectional form of oppgmnd . (Contributed by Stefan O'Rear, 26-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | oppgbas.1 | ⊢ 𝑂 = ( oppg ‘ 𝑅 ) | |
| Assertion | oppgmndb | ⊢ ( 𝑅 ∈ Mnd ↔ 𝑂 ∈ Mnd ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppgbas.1 | ⊢ 𝑂 = ( oppg ‘ 𝑅 ) | |
| 2 | 1 | oppgmnd | ⊢ ( 𝑅 ∈ Mnd → 𝑂 ∈ Mnd ) |
| 3 | eqid | ⊢ ( oppg ‘ 𝑂 ) = ( oppg ‘ 𝑂 ) | |
| 4 | 3 | oppgmnd | ⊢ ( 𝑂 ∈ Mnd → ( oppg ‘ 𝑂 ) ∈ Mnd ) |
| 5 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 6 | 1 5 | oppgbas | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑂 ) |
| 7 | 3 6 | oppgbas | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( oppg ‘ 𝑂 ) ) |
| 8 | 7 | a1i | ⊢ ( ⊤ → ( Base ‘ 𝑅 ) = ( Base ‘ ( oppg ‘ 𝑂 ) ) ) |
| 9 | eqidd | ⊢ ( ⊤ → ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) ) | |
| 10 | eqid | ⊢ ( +g ‘ 𝑂 ) = ( +g ‘ 𝑂 ) | |
| 11 | eqid | ⊢ ( +g ‘ ( oppg ‘ 𝑂 ) ) = ( +g ‘ ( oppg ‘ 𝑂 ) ) | |
| 12 | 10 3 11 | oppgplus | ⊢ ( 𝑥 ( +g ‘ ( oppg ‘ 𝑂 ) ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑂 ) 𝑥 ) |
| 13 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 14 | 13 1 10 | oppgplus | ⊢ ( 𝑦 ( +g ‘ 𝑂 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) |
| 15 | 12 14 | eqtri | ⊢ ( 𝑥 ( +g ‘ ( oppg ‘ 𝑂 ) ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) |
| 16 | 15 | a1i | ⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑥 ( +g ‘ ( oppg ‘ 𝑂 ) ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) |
| 17 | 8 9 16 | mndpropd | ⊢ ( ⊤ → ( ( oppg ‘ 𝑂 ) ∈ Mnd ↔ 𝑅 ∈ Mnd ) ) |
| 18 | 17 | mptru | ⊢ ( ( oppg ‘ 𝑂 ) ∈ Mnd ↔ 𝑅 ∈ Mnd ) |
| 19 | 4 18 | sylib | ⊢ ( 𝑂 ∈ Mnd → 𝑅 ∈ Mnd ) |
| 20 | 2 19 | impbii | ⊢ ( 𝑅 ∈ Mnd ↔ 𝑂 ∈ Mnd ) |