This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity morphism, or identity arrow, of the category built from a monoid is the identity element of the monoid. (Contributed by Zhi Wang, 22-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mndtccat.c | ⊢ ( 𝜑 → 𝐶 = ( MndToCat ‘ 𝑀 ) ) | |
| mndtccat.m | ⊢ ( 𝜑 → 𝑀 ∈ Mnd ) | ||
| mndtcid.b | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐶 ) ) | ||
| mndtcid.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| mndtcid.i | ⊢ ( 𝜑 → 1 = ( Id ‘ 𝐶 ) ) | ||
| Assertion | mndtcid | ⊢ ( 𝜑 → ( 1 ‘ 𝑋 ) = ( 0g ‘ 𝑀 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndtccat.c | ⊢ ( 𝜑 → 𝐶 = ( MndToCat ‘ 𝑀 ) ) | |
| 2 | mndtccat.m | ⊢ ( 𝜑 → 𝑀 ∈ Mnd ) | |
| 3 | mndtcid.b | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐶 ) ) | |
| 4 | mndtcid.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 5 | mndtcid.i | ⊢ ( 𝜑 → 1 = ( Id ‘ 𝐶 ) ) | |
| 6 | 1 2 | mndtccatid | ⊢ ( 𝜑 → ( 𝐶 ∈ Cat ∧ ( Id ‘ 𝐶 ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( 0g ‘ 𝑀 ) ) ) ) |
| 7 | 6 | simprd | ⊢ ( 𝜑 → ( Id ‘ 𝐶 ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( 0g ‘ 𝑀 ) ) ) |
| 8 | 5 7 | eqtrd | ⊢ ( 𝜑 → 1 = ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( 0g ‘ 𝑀 ) ) ) |
| 9 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( 0g ‘ 𝑀 ) = ( 0g ‘ 𝑀 ) ) | |
| 10 | 4 3 | eleqtrd | ⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝐶 ) ) |
| 11 | fvexd | ⊢ ( 𝜑 → ( 0g ‘ 𝑀 ) ∈ V ) | |
| 12 | 8 9 10 11 | fvmptd | ⊢ ( 𝜑 → ( 1 ‘ 𝑋 ) = ( 0g ‘ 𝑀 ) ) |