This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The converted opposite monoid has the same identity morphism as that of the opposite category. Example 3.6(2) of Adamek p. 25. (Contributed by Zhi Wang, 22-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mndtccat.c | ||
| mndtccat.m | |||
| oppgoppchom.d | |||
| oppgoppchom.o | |||
| oppgoppchom.x | |||
| oppgoppchom.y | |||
| Assertion | oppgoppcid |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndtccat.c | ||
| 2 | mndtccat.m | ||
| 3 | oppgoppchom.d | ||
| 4 | oppgoppchom.o | ||
| 5 | oppgoppchom.x | ||
| 6 | oppgoppchom.y | ||
| 7 | eqid | ||
| 8 | eqid | ||
| 9 | 7 8 | oppgid | |
| 10 | 9 | a1i | |
| 11 | eqid | ||
| 12 | 4 11 | oppcbas | |
| 13 | 12 | eqcomi | |
| 14 | 13 | a1i | |
| 15 | 1 2 | mndtccat | |
| 16 | eqid | ||
| 17 | 4 16 | oppcid | |
| 18 | 15 17 | syl | |
| 19 | 1 2 14 6 18 | mndtcid | |
| 20 | 7 | oppgmnd | |
| 21 | 2 20 | syl | |
| 22 | eqidd | ||
| 23 | eqidd | ||
| 24 | 3 21 22 5 23 | mndtcid | |
| 25 | 10 19 24 | 3eqtr4rd |