This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: All morphisms in a category converted from a group are monomorphisms. (Contributed by Zhi Wang, 23-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grptcmon.c | ⊢ ( 𝜑 → 𝐶 = ( MndToCat ‘ 𝐺 ) ) | |
| grptcmon.g | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) | ||
| grptcmon.b | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐶 ) ) | ||
| grptcmon.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| grptcmon.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| grptcmon.h | ⊢ ( 𝜑 → 𝐻 = ( Hom ‘ 𝐶 ) ) | ||
| grptcmon.m | ⊢ ( 𝜑 → 𝑀 = ( Mono ‘ 𝐶 ) ) | ||
| Assertion | grptcmon | ⊢ ( 𝜑 → ( 𝑋 𝑀 𝑌 ) = ( 𝑋 𝐻 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grptcmon.c | ⊢ ( 𝜑 → 𝐶 = ( MndToCat ‘ 𝐺 ) ) | |
| 2 | grptcmon.g | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) | |
| 3 | grptcmon.b | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐶 ) ) | |
| 4 | grptcmon.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 5 | grptcmon.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 6 | grptcmon.h | ⊢ ( 𝜑 → 𝐻 = ( Hom ‘ 𝐶 ) ) | |
| 7 | grptcmon.m | ⊢ ( 𝜑 → 𝑀 = ( Mono ‘ 𝐶 ) ) | |
| 8 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 9 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 10 | eqid | ⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) | |
| 11 | eqid | ⊢ ( Mono ‘ 𝐶 ) = ( Mono ‘ 𝐶 ) | |
| 12 | 2 | grpmndd | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
| 13 | 1 12 | mndtccat | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 14 | 4 3 | eleqtrd | ⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝐶 ) ) |
| 15 | 5 3 | eleqtrd | ⊢ ( 𝜑 → 𝑌 ∈ ( Base ‘ 𝐶 ) ) |
| 16 | 8 9 10 11 13 14 15 | ismon2 | ⊢ ( 𝜑 → ( 𝑓 ∈ ( 𝑋 ( Mono ‘ 𝐶 ) 𝑌 ) ↔ ( 𝑓 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ( ( 𝑓 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 𝑓 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ℎ ) → 𝑔 = ℎ ) ) ) ) |
| 17 | 1 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → 𝐶 = ( MndToCat ‘ 𝐺 ) ) |
| 18 | 12 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → 𝐺 ∈ Mnd ) |
| 19 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → 𝐵 = ( Base ‘ 𝐶 ) ) |
| 20 | simpr1 | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → 𝑧 ∈ ( Base ‘ 𝐶 ) ) | |
| 21 | 20 19 | eleqtrrd | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → 𝑧 ∈ 𝐵 ) |
| 22 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → 𝑋 ∈ 𝐵 ) |
| 23 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → 𝑌 ∈ 𝐵 ) |
| 24 | eqidd | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) ) | |
| 25 | eqidd | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) = ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ) | |
| 26 | 17 18 19 21 22 23 24 25 | mndtcco2 | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → ( 𝑓 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 𝑓 ( +g ‘ 𝐺 ) 𝑔 ) ) |
| 27 | 17 18 19 21 22 23 24 25 | mndtcco2 | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → ( 𝑓 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ℎ ) = ( 𝑓 ( +g ‘ 𝐺 ) ℎ ) ) |
| 28 | 26 27 | eqeq12d | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → ( ( 𝑓 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 𝑓 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ℎ ) ↔ ( 𝑓 ( +g ‘ 𝐺 ) 𝑔 ) = ( 𝑓 ( +g ‘ 𝐺 ) ℎ ) ) ) |
| 29 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → 𝐺 ∈ Grp ) |
| 30 | simpr2 | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) | |
| 31 | eqidd | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) ) | |
| 32 | 17 18 19 21 22 31 | mndtchom | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) = ( Base ‘ 𝐺 ) ) |
| 33 | 30 32 | eleqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → 𝑔 ∈ ( Base ‘ 𝐺 ) ) |
| 34 | simpr3 | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) | |
| 35 | 34 32 | eleqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → ℎ ∈ ( Base ‘ 𝐺 ) ) |
| 36 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → 𝑓 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) | |
| 37 | 17 18 19 22 23 31 | mndtchom | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) = ( Base ‘ 𝐺 ) ) |
| 38 | 36 37 | eleqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → 𝑓 ∈ ( Base ‘ 𝐺 ) ) |
| 39 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 40 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 41 | 39 40 | grplcan | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑔 ∈ ( Base ‘ 𝐺 ) ∧ ℎ ∈ ( Base ‘ 𝐺 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑓 ( +g ‘ 𝐺 ) 𝑔 ) = ( 𝑓 ( +g ‘ 𝐺 ) ℎ ) ↔ 𝑔 = ℎ ) ) |
| 42 | 29 33 35 38 41 | syl13anc | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → ( ( 𝑓 ( +g ‘ 𝐺 ) 𝑔 ) = ( 𝑓 ( +g ‘ 𝐺 ) ℎ ) ↔ 𝑔 = ℎ ) ) |
| 43 | 28 42 | bitrd | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → ( ( 𝑓 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 𝑓 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ℎ ) ↔ 𝑔 = ℎ ) ) |
| 44 | 43 | biimpd | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → ( ( 𝑓 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 𝑓 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ℎ ) → 𝑔 = ℎ ) ) |
| 45 | 44 | ralrimivvva | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) → ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ( ( 𝑓 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 𝑓 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ℎ ) → 𝑔 = ℎ ) ) |
| 46 | 16 45 | mpbiran3d | ⊢ ( 𝜑 → ( 𝑓 ∈ ( 𝑋 ( Mono ‘ 𝐶 ) 𝑌 ) ↔ 𝑓 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) ) |
| 47 | 46 | eqrdv | ⊢ ( 𝜑 → ( 𝑋 ( Mono ‘ 𝐶 ) 𝑌 ) = ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) |
| 48 | 7 | oveqd | ⊢ ( 𝜑 → ( 𝑋 𝑀 𝑌 ) = ( 𝑋 ( Mono ‘ 𝐶 ) 𝑌 ) ) |
| 49 | 6 | oveqd | ⊢ ( 𝜑 → ( 𝑋 𝐻 𝑌 ) = ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) |
| 50 | 47 48 49 | 3eqtr4d | ⊢ ( 𝜑 → ( 𝑋 𝑀 𝑌 ) = ( 𝑋 𝐻 𝑌 ) ) |