This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof of oppcthinendc . (Contributed by Zhi Wang, 16-Oct-2025) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppcthinco.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| oppcthinco.c | ⊢ ( 𝜑 → 𝐶 ∈ ThinCat ) | ||
| oppcthinendc.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
| oppcthinendc.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| oppcthinendc.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ≠ 𝑦 → ( 𝑥 𝐻 𝑦 ) = ∅ ) ) | ||
| Assertion | oppcthinendcALT | ⊢ ( 𝜑 → ( compf ‘ 𝐶 ) = ( compf ‘ 𝑂 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppcthinco.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| 2 | oppcthinco.c | ⊢ ( 𝜑 → 𝐶 ∈ ThinCat ) | |
| 3 | oppcthinendc.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 4 | oppcthinendc.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 5 | oppcthinendc.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ≠ 𝑦 → ( 𝑥 𝐻 𝑦 ) = ∅ ) ) | |
| 6 | eqid | ⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) | |
| 7 | simplr1 | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → 𝑥 ∈ 𝐵 ) | |
| 8 | simplr2 | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → 𝑦 ∈ 𝐵 ) | |
| 9 | simplr3 | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → 𝑧 ∈ 𝐵 ) | |
| 10 | 3 6 1 7 8 9 | oppcco | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑂 ) 𝑧 ) 𝑓 ) = ( 𝑓 ( 〈 𝑧 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑔 ) ) |
| 11 | simpll | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → 𝜑 ) | |
| 12 | 7 8 | jca | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) |
| 13 | simprl | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ) | |
| 14 | 13 | ne0d | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → ( 𝑥 𝐻 𝑦 ) ≠ ∅ ) |
| 15 | 5 | necon1d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑥 𝐻 𝑦 ) ≠ ∅ → 𝑥 = 𝑦 ) ) |
| 16 | 15 | imp | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑥 𝐻 𝑦 ) ≠ ∅ ) → 𝑥 = 𝑦 ) |
| 17 | 11 12 14 16 | syl21anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → 𝑥 = 𝑦 ) |
| 18 | simprr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) | |
| 19 | 18 | ne0d | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → ( 𝑦 𝐻 𝑧 ) ≠ ∅ ) |
| 20 | neeq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ≠ 𝑧 ↔ 𝑦 ≠ 𝑧 ) ) | |
| 21 | oveq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 𝐻 𝑧 ) = ( 𝑦 𝐻 𝑧 ) ) | |
| 22 | 21 | eqeq1d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 𝐻 𝑧 ) = ∅ ↔ ( 𝑦 𝐻 𝑧 ) = ∅ ) ) |
| 23 | 20 22 | imbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ≠ 𝑧 → ( 𝑥 𝐻 𝑧 ) = ∅ ) ↔ ( 𝑦 ≠ 𝑧 → ( 𝑦 𝐻 𝑧 ) = ∅ ) ) ) |
| 24 | neeq2 | ⊢ ( 𝑦 = 𝑧 → ( 𝑥 ≠ 𝑦 ↔ 𝑥 ≠ 𝑧 ) ) | |
| 25 | oveq2 | ⊢ ( 𝑦 = 𝑧 → ( 𝑥 𝐻 𝑦 ) = ( 𝑥 𝐻 𝑧 ) ) | |
| 26 | 25 | eqeq1d | ⊢ ( 𝑦 = 𝑧 → ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( 𝑥 𝐻 𝑧 ) = ∅ ) ) |
| 27 | 24 26 | imbi12d | ⊢ ( 𝑦 = 𝑧 → ( ( 𝑥 ≠ 𝑦 → ( 𝑥 𝐻 𝑦 ) = ∅ ) ↔ ( 𝑥 ≠ 𝑧 → ( 𝑥 𝐻 𝑧 ) = ∅ ) ) ) |
| 28 | 5 | anassrs | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ≠ 𝑦 → ( 𝑥 𝐻 𝑦 ) = ∅ ) ) |
| 29 | 28 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≠ 𝑦 → ( 𝑥 𝐻 𝑦 ) = ∅ ) ) |
| 30 | 29 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≠ 𝑦 → ( 𝑥 𝐻 𝑦 ) = ∅ ) ) |
| 31 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → 𝑧 ∈ 𝐵 ) | |
| 32 | 27 30 31 | rspcdva | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ≠ 𝑧 → ( 𝑥 𝐻 𝑧 ) = ∅ ) ) |
| 33 | 32 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ∀ 𝑥 ∈ 𝐵 ( 𝑥 ≠ 𝑧 → ( 𝑥 𝐻 𝑧 ) = ∅ ) ) |
| 34 | 11 9 33 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → ∀ 𝑥 ∈ 𝐵 ( 𝑥 ≠ 𝑧 → ( 𝑥 𝐻 𝑧 ) = ∅ ) ) |
| 35 | 23 34 8 | rspcdva | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → ( 𝑦 ≠ 𝑧 → ( 𝑦 𝐻 𝑧 ) = ∅ ) ) |
| 36 | 35 | necon1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → ( ( 𝑦 𝐻 𝑧 ) ≠ ∅ → 𝑦 = 𝑧 ) ) |
| 37 | 19 36 | mpd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → 𝑦 = 𝑧 ) |
| 38 | 17 37 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → 𝑥 = 𝑧 ) |
| 39 | 38 | equcomd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → 𝑧 = 𝑥 ) |
| 40 | 39 | opeq1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → 〈 𝑧 , 𝑦 〉 = 〈 𝑥 , 𝑦 〉 ) |
| 41 | 40 38 | oveq12d | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → ( 〈 𝑧 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑥 ) = ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) ) |
| 42 | 17 | oveq1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑦 𝐻 𝑦 ) ) |
| 43 | 13 42 | eleqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → 𝑓 ∈ ( 𝑦 𝐻 𝑦 ) ) |
| 44 | 37 | oveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → ( 𝑦 𝐻 𝑦 ) = ( 𝑦 𝐻 𝑧 ) ) |
| 45 | 18 44 | eleqtrrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → 𝑔 ∈ ( 𝑦 𝐻 𝑦 ) ) |
| 46 | 11 2 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → 𝐶 ∈ ThinCat ) |
| 47 | 8 8 43 45 3 4 46 | thincmo2 | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → 𝑓 = 𝑔 ) |
| 48 | 47 | equcomd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → 𝑔 = 𝑓 ) |
| 49 | 41 47 48 | oveq123d | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → ( 𝑓 ( 〈 𝑧 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑔 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) |
| 50 | 10 49 | eqtr2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑂 ) 𝑧 ) 𝑓 ) ) |
| 51 | 50 | ralrimivva | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑂 ) 𝑧 ) 𝑓 ) ) |
| 52 | 51 | ralrimivvva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑂 ) 𝑧 ) 𝑓 ) ) |
| 53 | eqid | ⊢ ( comp ‘ 𝑂 ) = ( comp ‘ 𝑂 ) | |
| 54 | 3 | a1i | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐶 ) ) |
| 55 | 1 3 | oppcbas | ⊢ 𝐵 = ( Base ‘ 𝑂 ) |
| 56 | 55 | a1i | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑂 ) ) |
| 57 | 1 3 4 5 | oppcendc | ⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝑂 ) ) |
| 58 | 6 53 4 54 56 57 | comfeq | ⊢ ( 𝜑 → ( ( compf ‘ 𝐶 ) = ( compf ‘ 𝑂 ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑂 ) 𝑧 ) 𝑓 ) ) ) |
| 59 | 52 58 | mpbird | ⊢ ( 𝜑 → ( compf ‘ 𝐶 ) = ( compf ‘ 𝑂 ) ) |