This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The opposite category of a thin category whose morphisms are all endomorphisms has the same base, hom-sets ( oppcendc ) and composition operation as the original category. (Contributed by Zhi Wang, 16-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppcthinco.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| oppcthinco.c | ⊢ ( 𝜑 → 𝐶 ∈ ThinCat ) | ||
| oppcthinendc.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
| oppcthinendc.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| oppcthinendc.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ≠ 𝑦 → ( 𝑥 𝐻 𝑦 ) = ∅ ) ) | ||
| Assertion | oppcthinendc | ⊢ ( 𝜑 → ( compf ‘ 𝐶 ) = ( compf ‘ 𝑂 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppcthinco.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| 2 | oppcthinco.c | ⊢ ( 𝜑 → 𝐶 ∈ ThinCat ) | |
| 3 | oppcthinendc.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 4 | oppcthinendc.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 5 | oppcthinendc.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ≠ 𝑦 → ( 𝑥 𝐻 𝑦 ) = ∅ ) ) | |
| 6 | 1 3 4 5 | oppcendc | ⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝑂 ) ) |
| 7 | 1 2 6 | oppcthinco | ⊢ ( 𝜑 → ( compf ‘ 𝐶 ) = ( compf ‘ 𝑂 ) ) |