This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The opposite category of a category whose morphisms are all endomorphisms has the same base and hom-sets as the original category. (Contributed by Zhi Wang, 16-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppcendc.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| oppcendc.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
| oppcendc.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| oppcendc.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ≠ 𝑦 → ( 𝑥 𝐻 𝑦 ) = ∅ ) ) | ||
| Assertion | oppcendc | ⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝑂 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppcendc.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| 2 | oppcendc.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 3 | oppcendc.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 4 | oppcendc.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ≠ 𝑦 → ( 𝑥 𝐻 𝑦 ) = ∅ ) ) | |
| 5 | 4 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≠ 𝑦 → ( 𝑥 𝐻 𝑦 ) = ∅ ) ) |
| 6 | eqeq12 | ⊢ ( ( 𝑥 = 𝑝 ∧ 𝑦 = 𝑞 ) → ( 𝑥 = 𝑦 ↔ 𝑝 = 𝑞 ) ) | |
| 7 | 6 | necon3bid | ⊢ ( ( 𝑥 = 𝑝 ∧ 𝑦 = 𝑞 ) → ( 𝑥 ≠ 𝑦 ↔ 𝑝 ≠ 𝑞 ) ) |
| 8 | oveq12 | ⊢ ( ( 𝑥 = 𝑝 ∧ 𝑦 = 𝑞 ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑝 𝐻 𝑞 ) ) | |
| 9 | 8 | eqeq1d | ⊢ ( ( 𝑥 = 𝑝 ∧ 𝑦 = 𝑞 ) → ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( 𝑝 𝐻 𝑞 ) = ∅ ) ) |
| 10 | 7 9 | imbi12d | ⊢ ( ( 𝑥 = 𝑝 ∧ 𝑦 = 𝑞 ) → ( ( 𝑥 ≠ 𝑦 → ( 𝑥 𝐻 𝑦 ) = ∅ ) ↔ ( 𝑝 ≠ 𝑞 → ( 𝑝 𝐻 𝑞 ) = ∅ ) ) ) |
| 11 | 10 | rspc2gv | ⊢ ( ( 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≠ 𝑦 → ( 𝑥 𝐻 𝑦 ) = ∅ ) → ( 𝑝 ≠ 𝑞 → ( 𝑝 𝐻 𝑞 ) = ∅ ) ) ) |
| 12 | 5 11 | mpan9 | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ) ) → ( 𝑝 ≠ 𝑞 → ( 𝑝 𝐻 𝑞 ) = ∅ ) ) |
| 13 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ) ) → 𝑞 ∈ 𝐵 ) | |
| 14 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ) ) → 𝑝 ∈ 𝐵 ) | |
| 15 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ) ) → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≠ 𝑦 → ( 𝑥 𝐻 𝑦 ) = ∅ ) ) |
| 16 | eqeq12 | ⊢ ( ( 𝑥 = 𝑞 ∧ 𝑦 = 𝑝 ) → ( 𝑥 = 𝑦 ↔ 𝑞 = 𝑝 ) ) | |
| 17 | equcom | ⊢ ( 𝑝 = 𝑞 ↔ 𝑞 = 𝑝 ) | |
| 18 | 16 17 | bitr4di | ⊢ ( ( 𝑥 = 𝑞 ∧ 𝑦 = 𝑝 ) → ( 𝑥 = 𝑦 ↔ 𝑝 = 𝑞 ) ) |
| 19 | 18 | necon3bid | ⊢ ( ( 𝑥 = 𝑞 ∧ 𝑦 = 𝑝 ) → ( 𝑥 ≠ 𝑦 ↔ 𝑝 ≠ 𝑞 ) ) |
| 20 | oveq12 | ⊢ ( ( 𝑥 = 𝑞 ∧ 𝑦 = 𝑝 ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑞 𝐻 𝑝 ) ) | |
| 21 | 20 | eqeq1d | ⊢ ( ( 𝑥 = 𝑞 ∧ 𝑦 = 𝑝 ) → ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( 𝑞 𝐻 𝑝 ) = ∅ ) ) |
| 22 | 19 21 | imbi12d | ⊢ ( ( 𝑥 = 𝑞 ∧ 𝑦 = 𝑝 ) → ( ( 𝑥 ≠ 𝑦 → ( 𝑥 𝐻 𝑦 ) = ∅ ) ↔ ( 𝑝 ≠ 𝑞 → ( 𝑞 𝐻 𝑝 ) = ∅ ) ) ) |
| 23 | 22 | rspc2gv | ⊢ ( ( 𝑞 ∈ 𝐵 ∧ 𝑝 ∈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≠ 𝑦 → ( 𝑥 𝐻 𝑦 ) = ∅ ) → ( 𝑝 ≠ 𝑞 → ( 𝑞 𝐻 𝑝 ) = ∅ ) ) ) |
| 24 | 23 | imp | ⊢ ( ( ( 𝑞 ∈ 𝐵 ∧ 𝑝 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≠ 𝑦 → ( 𝑥 𝐻 𝑦 ) = ∅ ) ) → ( 𝑝 ≠ 𝑞 → ( 𝑞 𝐻 𝑝 ) = ∅ ) ) |
| 25 | 13 14 15 24 | syl21anc | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ) ) → ( 𝑝 ≠ 𝑞 → ( 𝑞 𝐻 𝑝 ) = ∅ ) ) |
| 26 | 12 25 | jcad | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ) ) → ( 𝑝 ≠ 𝑞 → ( ( 𝑝 𝐻 𝑞 ) = ∅ ∧ ( 𝑞 𝐻 𝑝 ) = ∅ ) ) ) |
| 27 | nne | ⊢ ( ¬ 𝑝 ≠ 𝑞 ↔ 𝑝 = 𝑞 ) | |
| 28 | id | ⊢ ( 𝑝 = 𝑞 → 𝑝 = 𝑞 ) | |
| 29 | equcomi | ⊢ ( 𝑝 = 𝑞 → 𝑞 = 𝑝 ) | |
| 30 | 28 29 | oveq12d | ⊢ ( 𝑝 = 𝑞 → ( 𝑝 𝐻 𝑞 ) = ( 𝑞 𝐻 𝑝 ) ) |
| 31 | 27 30 | sylbi | ⊢ ( ¬ 𝑝 ≠ 𝑞 → ( 𝑝 𝐻 𝑞 ) = ( 𝑞 𝐻 𝑝 ) ) |
| 32 | eqtr3 | ⊢ ( ( ( 𝑝 𝐻 𝑞 ) = ∅ ∧ ( 𝑞 𝐻 𝑝 ) = ∅ ) → ( 𝑝 𝐻 𝑞 ) = ( 𝑞 𝐻 𝑝 ) ) | |
| 33 | 31 32 | ja | ⊢ ( ( 𝑝 ≠ 𝑞 → ( ( 𝑝 𝐻 𝑞 ) = ∅ ∧ ( 𝑞 𝐻 𝑝 ) = ∅ ) ) → ( 𝑝 𝐻 𝑞 ) = ( 𝑞 𝐻 𝑝 ) ) |
| 34 | 26 33 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ) ) → ( 𝑝 𝐻 𝑞 ) = ( 𝑞 𝐻 𝑝 ) ) |
| 35 | eqid | ⊢ ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐶 ) | |
| 36 | 35 2 3 14 13 | homfval | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ) ) → ( 𝑝 ( Homf ‘ 𝐶 ) 𝑞 ) = ( 𝑝 𝐻 𝑞 ) ) |
| 37 | 35 2 3 13 14 | homfval | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ) ) → ( 𝑞 ( Homf ‘ 𝐶 ) 𝑝 ) = ( 𝑞 𝐻 𝑝 ) ) |
| 38 | 34 36 37 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ) ) → ( 𝑝 ( Homf ‘ 𝐶 ) 𝑞 ) = ( 𝑞 ( Homf ‘ 𝐶 ) 𝑝 ) ) |
| 39 | 38 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑝 ∈ 𝐵 ∀ 𝑞 ∈ 𝐵 ( 𝑝 ( Homf ‘ 𝐶 ) 𝑞 ) = ( 𝑞 ( Homf ‘ 𝐶 ) 𝑝 ) ) |
| 40 | 35 2 | homffn | ⊢ ( Homf ‘ 𝐶 ) Fn ( 𝐵 × 𝐵 ) |
| 41 | tpossym | ⊢ ( ( Homf ‘ 𝐶 ) Fn ( 𝐵 × 𝐵 ) → ( tpos ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐶 ) ↔ ∀ 𝑝 ∈ 𝐵 ∀ 𝑞 ∈ 𝐵 ( 𝑝 ( Homf ‘ 𝐶 ) 𝑞 ) = ( 𝑞 ( Homf ‘ 𝐶 ) 𝑝 ) ) ) | |
| 42 | 40 41 | ax-mp | ⊢ ( tpos ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐶 ) ↔ ∀ 𝑝 ∈ 𝐵 ∀ 𝑞 ∈ 𝐵 ( 𝑝 ( Homf ‘ 𝐶 ) 𝑞 ) = ( 𝑞 ( Homf ‘ 𝐶 ) 𝑝 ) ) |
| 43 | 39 42 | sylibr | ⊢ ( 𝜑 → tpos ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐶 ) ) |
| 44 | 1 35 | oppchomf | ⊢ tpos ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝑂 ) |
| 45 | 43 44 | eqtr3di | ⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝑂 ) ) |