This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An isomorphism in the opposite category. See also remark 3.9 in Adamek p. 28. (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppcsect.b | |- B = ( Base ` C ) |
|
| oppcsect.o | |- O = ( oppCat ` C ) |
||
| oppcsect.c | |- ( ph -> C e. Cat ) |
||
| oppcsect.x | |- ( ph -> X e. B ) |
||
| oppcsect.y | |- ( ph -> Y e. B ) |
||
| oppciso.s | |- I = ( Iso ` C ) |
||
| oppciso.t | |- J = ( Iso ` O ) |
||
| Assertion | oppciso | |- ( ph -> ( X J Y ) = ( Y I X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppcsect.b | |- B = ( Base ` C ) |
|
| 2 | oppcsect.o | |- O = ( oppCat ` C ) |
|
| 3 | oppcsect.c | |- ( ph -> C e. Cat ) |
|
| 4 | oppcsect.x | |- ( ph -> X e. B ) |
|
| 5 | oppcsect.y | |- ( ph -> Y e. B ) |
|
| 6 | oppciso.s | |- I = ( Iso ` C ) |
|
| 7 | oppciso.t | |- J = ( Iso ` O ) |
|
| 8 | eqid | |- ( Inv ` C ) = ( Inv ` C ) |
|
| 9 | eqid | |- ( Inv ` O ) = ( Inv ` O ) |
|
| 10 | 1 2 3 4 5 8 9 | oppcinv | |- ( ph -> ( X ( Inv ` O ) Y ) = ( Y ( Inv ` C ) X ) ) |
| 11 | 10 | dmeqd | |- ( ph -> dom ( X ( Inv ` O ) Y ) = dom ( Y ( Inv ` C ) X ) ) |
| 12 | 2 1 | oppcbas | |- B = ( Base ` O ) |
| 13 | 2 | oppccat | |- ( C e. Cat -> O e. Cat ) |
| 14 | 3 13 | syl | |- ( ph -> O e. Cat ) |
| 15 | 12 9 14 4 5 7 | isoval | |- ( ph -> ( X J Y ) = dom ( X ( Inv ` O ) Y ) ) |
| 16 | 1 8 3 5 4 6 | isoval | |- ( ph -> ( Y I X ) = dom ( Y ( Inv ` C ) X ) ) |
| 17 | 11 15 16 | 3eqtr4d | |- ( ph -> ( X J Y ) = ( Y I X ) ) |