This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An isomorphism in the opposite category. See also remark 3.9 in Adamek p. 28. (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppcsect.b | ||
| oppcsect.o | |||
| oppcsect.c | |||
| oppcsect.x | |||
| oppcsect.y | |||
| oppciso.s | |||
| oppciso.t | |||
| Assertion | oppciso |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppcsect.b | ||
| 2 | oppcsect.o | ||
| 3 | oppcsect.c | ||
| 4 | oppcsect.x | ||
| 5 | oppcsect.y | ||
| 6 | oppciso.s | ||
| 7 | oppciso.t | ||
| 8 | eqid | ||
| 9 | eqid | ||
| 10 | 1 2 3 4 5 8 9 | oppcinv | |
| 11 | 10 | dmeqd | |
| 12 | 2 1 | oppcbas | |
| 13 | 2 | oppccat | |
| 14 | 3 13 | syl | |
| 15 | 12 9 14 4 5 7 | isoval | |
| 16 | 1 8 3 5 4 6 | isoval | |
| 17 | 11 15 16 | 3eqtr4d |