This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An initial object is a terminal object in the opposite category. An alternate definition of df-inito depending on df-termo . (Contributed by Zhi Wang, 29-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfinito2 | ⊢ InitO = ( 𝑐 ∈ Cat ↦ ( TermO ‘ ( oppCat ‘ 𝑐 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-inito | ⊢ InitO = ( 𝑐 ∈ Cat ↦ { 𝑎 ∈ ( Base ‘ 𝑐 ) ∣ ∀ 𝑏 ∈ ( Base ‘ 𝑐 ) ∃! ℎ ℎ ∈ ( 𝑎 ( Hom ‘ 𝑐 ) 𝑏 ) } ) | |
| 2 | eqid | ⊢ ( oppCat ‘ 𝑐 ) = ( oppCat ‘ 𝑐 ) | |
| 3 | 2 | oppccat | ⊢ ( 𝑐 ∈ Cat → ( oppCat ‘ 𝑐 ) ∈ Cat ) |
| 4 | eqid | ⊢ ( Base ‘ 𝑐 ) = ( Base ‘ 𝑐 ) | |
| 5 | 2 4 | oppcbas | ⊢ ( Base ‘ 𝑐 ) = ( Base ‘ ( oppCat ‘ 𝑐 ) ) |
| 6 | eqid | ⊢ ( Hom ‘ ( oppCat ‘ 𝑐 ) ) = ( Hom ‘ ( oppCat ‘ 𝑐 ) ) | |
| 7 | 3 5 6 | termoval | ⊢ ( 𝑐 ∈ Cat → ( TermO ‘ ( oppCat ‘ 𝑐 ) ) = { 𝑎 ∈ ( Base ‘ 𝑐 ) ∣ ∀ 𝑏 ∈ ( Base ‘ 𝑐 ) ∃! ℎ ℎ ∈ ( 𝑏 ( Hom ‘ ( oppCat ‘ 𝑐 ) ) 𝑎 ) } ) |
| 8 | eqid | ⊢ ( Hom ‘ 𝑐 ) = ( Hom ‘ 𝑐 ) | |
| 9 | 8 2 | oppchom | ⊢ ( 𝑏 ( Hom ‘ ( oppCat ‘ 𝑐 ) ) 𝑎 ) = ( 𝑎 ( Hom ‘ 𝑐 ) 𝑏 ) |
| 10 | 9 | eleq2i | ⊢ ( ℎ ∈ ( 𝑏 ( Hom ‘ ( oppCat ‘ 𝑐 ) ) 𝑎 ) ↔ ℎ ∈ ( 𝑎 ( Hom ‘ 𝑐 ) 𝑏 ) ) |
| 11 | 10 | eubii | ⊢ ( ∃! ℎ ℎ ∈ ( 𝑏 ( Hom ‘ ( oppCat ‘ 𝑐 ) ) 𝑎 ) ↔ ∃! ℎ ℎ ∈ ( 𝑎 ( Hom ‘ 𝑐 ) 𝑏 ) ) |
| 12 | 11 | ralbii | ⊢ ( ∀ 𝑏 ∈ ( Base ‘ 𝑐 ) ∃! ℎ ℎ ∈ ( 𝑏 ( Hom ‘ ( oppCat ‘ 𝑐 ) ) 𝑎 ) ↔ ∀ 𝑏 ∈ ( Base ‘ 𝑐 ) ∃! ℎ ℎ ∈ ( 𝑎 ( Hom ‘ 𝑐 ) 𝑏 ) ) |
| 13 | 12 | rabbii | ⊢ { 𝑎 ∈ ( Base ‘ 𝑐 ) ∣ ∀ 𝑏 ∈ ( Base ‘ 𝑐 ) ∃! ℎ ℎ ∈ ( 𝑏 ( Hom ‘ ( oppCat ‘ 𝑐 ) ) 𝑎 ) } = { 𝑎 ∈ ( Base ‘ 𝑐 ) ∣ ∀ 𝑏 ∈ ( Base ‘ 𝑐 ) ∃! ℎ ℎ ∈ ( 𝑎 ( Hom ‘ 𝑐 ) 𝑏 ) } |
| 14 | 7 13 | eqtrdi | ⊢ ( 𝑐 ∈ Cat → ( TermO ‘ ( oppCat ‘ 𝑐 ) ) = { 𝑎 ∈ ( Base ‘ 𝑐 ) ∣ ∀ 𝑏 ∈ ( Base ‘ 𝑐 ) ∃! ℎ ℎ ∈ ( 𝑎 ( Hom ‘ 𝑐 ) 𝑏 ) } ) |
| 15 | 14 | mpteq2ia | ⊢ ( 𝑐 ∈ Cat ↦ ( TermO ‘ ( oppCat ‘ 𝑐 ) ) ) = ( 𝑐 ∈ Cat ↦ { 𝑎 ∈ ( Base ‘ 𝑐 ) ∣ ∀ 𝑏 ∈ ( Base ‘ 𝑐 ) ∃! ℎ ℎ ∈ ( 𝑎 ( Hom ‘ 𝑐 ) 𝑏 ) } ) |
| 16 | 1 15 | eqtr4i | ⊢ InitO = ( 𝑐 ∈ Cat ↦ ( TermO ‘ ( oppCat ‘ 𝑐 ) ) ) |