This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Initial objects are terminal in the opposite category. (Contributed by Zhi Wang, 23-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oppcinito | |- ( I e. ( InitO ` C ) <-> I e. ( TermO ` ( oppCat ` C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | initorcl | |- ( I e. ( InitO ` C ) -> C e. Cat ) |
|
| 2 | termorcl | |- ( I e. ( TermO ` ( oppCat ` C ) ) -> ( oppCat ` C ) e. Cat ) |
|
| 3 | eqid | |- ( oppCat ` C ) = ( oppCat ` C ) |
|
| 4 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 5 | 3 4 | oppcbas | |- ( Base ` C ) = ( Base ` ( oppCat ` C ) ) |
| 6 | 5 | termoo2 | |- ( I e. ( TermO ` ( oppCat ` C ) ) -> I e. ( Base ` C ) ) |
| 7 | elfvex | |- ( I e. ( Base ` C ) -> C e. _V ) |
|
| 8 | id | |- ( C e. _V -> C e. _V ) |
|
| 9 | 3 8 | oppccatb | |- ( C e. _V -> ( C e. Cat <-> ( oppCat ` C ) e. Cat ) ) |
| 10 | 6 7 9 | 3syl | |- ( I e. ( TermO ` ( oppCat ` C ) ) -> ( C e. Cat <-> ( oppCat ` C ) e. Cat ) ) |
| 11 | 2 10 | mpbird | |- ( I e. ( TermO ` ( oppCat ` C ) ) -> C e. Cat ) |
| 12 | 2fveq3 | |- ( c = C -> ( TermO ` ( oppCat ` c ) ) = ( TermO ` ( oppCat ` C ) ) ) |
|
| 13 | dfinito2 | |- InitO = ( c e. Cat |-> ( TermO ` ( oppCat ` c ) ) ) |
|
| 14 | fvex | |- ( TermO ` ( oppCat ` C ) ) e. _V |
|
| 15 | 12 13 14 | fvmpt | |- ( C e. Cat -> ( InitO ` C ) = ( TermO ` ( oppCat ` C ) ) ) |
| 16 | 15 | eleq2d | |- ( C e. Cat -> ( I e. ( InitO ` C ) <-> I e. ( TermO ` ( oppCat ` C ) ) ) ) |
| 17 | 1 11 16 | pm5.21nii | |- ( I e. ( InitO ` C ) <-> I e. ( TermO ` ( oppCat ` C ) ) ) |