This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An epimorphism in the opposite category is a monomorphism. (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppcmon.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| oppcmon.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| oppcepi.e | ⊢ 𝐸 = ( Epi ‘ 𝑂 ) | ||
| oppcepi.m | ⊢ 𝑀 = ( Mono ‘ 𝐶 ) | ||
| Assertion | oppcepi | ⊢ ( 𝜑 → ( 𝑋 𝐸 𝑌 ) = ( 𝑌 𝑀 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppcmon.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| 2 | oppcmon.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 3 | oppcepi.e | ⊢ 𝐸 = ( Epi ‘ 𝑂 ) | |
| 4 | oppcepi.m | ⊢ 𝑀 = ( Mono ‘ 𝐶 ) | |
| 5 | 1 | 2oppchomf | ⊢ ( Homf ‘ 𝐶 ) = ( Homf ‘ ( oppCat ‘ 𝑂 ) ) |
| 6 | 5 | a1i | ⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Homf ‘ ( oppCat ‘ 𝑂 ) ) ) |
| 7 | 1 | 2oppccomf | ⊢ ( compf ‘ 𝐶 ) = ( compf ‘ ( oppCat ‘ 𝑂 ) ) |
| 8 | 7 | a1i | ⊢ ( 𝜑 → ( compf ‘ 𝐶 ) = ( compf ‘ ( oppCat ‘ 𝑂 ) ) ) |
| 9 | 1 | oppccat | ⊢ ( 𝐶 ∈ Cat → 𝑂 ∈ Cat ) |
| 10 | 2 9 | syl | ⊢ ( 𝜑 → 𝑂 ∈ Cat ) |
| 11 | eqid | ⊢ ( oppCat ‘ 𝑂 ) = ( oppCat ‘ 𝑂 ) | |
| 12 | 11 | oppccat | ⊢ ( 𝑂 ∈ Cat → ( oppCat ‘ 𝑂 ) ∈ Cat ) |
| 13 | 10 12 | syl | ⊢ ( 𝜑 → ( oppCat ‘ 𝑂 ) ∈ Cat ) |
| 14 | 6 8 2 13 | monpropd | ⊢ ( 𝜑 → ( Mono ‘ 𝐶 ) = ( Mono ‘ ( oppCat ‘ 𝑂 ) ) ) |
| 15 | 4 14 | eqtrid | ⊢ ( 𝜑 → 𝑀 = ( Mono ‘ ( oppCat ‘ 𝑂 ) ) ) |
| 16 | 15 | oveqd | ⊢ ( 𝜑 → ( 𝑌 𝑀 𝑋 ) = ( 𝑌 ( Mono ‘ ( oppCat ‘ 𝑂 ) ) 𝑋 ) ) |
| 17 | eqid | ⊢ ( Mono ‘ ( oppCat ‘ 𝑂 ) ) = ( Mono ‘ ( oppCat ‘ 𝑂 ) ) | |
| 18 | 11 10 17 3 | oppcmon | ⊢ ( 𝜑 → ( 𝑌 ( Mono ‘ ( oppCat ‘ 𝑂 ) ) 𝑋 ) = ( 𝑋 𝐸 𝑌 ) ) |
| 19 | 16 18 | eqtr2d | ⊢ ( 𝜑 → ( 𝑋 𝐸 𝑌 ) = ( 𝑌 𝑀 𝑋 ) ) |