This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An epimorphism in the opposite category is a monomorphism. (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppcmon.o | |- O = ( oppCat ` C ) |
|
| oppcmon.c | |- ( ph -> C e. Cat ) |
||
| oppcepi.e | |- E = ( Epi ` O ) |
||
| oppcepi.m | |- M = ( Mono ` C ) |
||
| Assertion | oppcepi | |- ( ph -> ( X E Y ) = ( Y M X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppcmon.o | |- O = ( oppCat ` C ) |
|
| 2 | oppcmon.c | |- ( ph -> C e. Cat ) |
|
| 3 | oppcepi.e | |- E = ( Epi ` O ) |
|
| 4 | oppcepi.m | |- M = ( Mono ` C ) |
|
| 5 | 1 | 2oppchomf | |- ( Homf ` C ) = ( Homf ` ( oppCat ` O ) ) |
| 6 | 5 | a1i | |- ( ph -> ( Homf ` C ) = ( Homf ` ( oppCat ` O ) ) ) |
| 7 | 1 | 2oppccomf | |- ( comf ` C ) = ( comf ` ( oppCat ` O ) ) |
| 8 | 7 | a1i | |- ( ph -> ( comf ` C ) = ( comf ` ( oppCat ` O ) ) ) |
| 9 | 1 | oppccat | |- ( C e. Cat -> O e. Cat ) |
| 10 | 2 9 | syl | |- ( ph -> O e. Cat ) |
| 11 | eqid | |- ( oppCat ` O ) = ( oppCat ` O ) |
|
| 12 | 11 | oppccat | |- ( O e. Cat -> ( oppCat ` O ) e. Cat ) |
| 13 | 10 12 | syl | |- ( ph -> ( oppCat ` O ) e. Cat ) |
| 14 | 6 8 2 13 | monpropd | |- ( ph -> ( Mono ` C ) = ( Mono ` ( oppCat ` O ) ) ) |
| 15 | 4 14 | eqtrid | |- ( ph -> M = ( Mono ` ( oppCat ` O ) ) ) |
| 16 | 15 | oveqd | |- ( ph -> ( Y M X ) = ( Y ( Mono ` ( oppCat ` O ) ) X ) ) |
| 17 | eqid | |- ( Mono ` ( oppCat ` O ) ) = ( Mono ` ( oppCat ` O ) ) |
|
| 18 | 11 10 17 3 | oppcmon | |- ( ph -> ( Y ( Mono ` ( oppCat ` O ) ) X ) = ( X E Y ) ) |
| 19 | 16 18 | eqtr2d | |- ( ph -> ( X E Y ) = ( Y M X ) ) |