This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Definition of an epimorphism in a category. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isepi.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| isepi.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| isepi.o | ⊢ · = ( comp ‘ 𝐶 ) | ||
| isepi.e | ⊢ 𝐸 = ( Epi ‘ 𝐶 ) | ||
| isepi.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| isepi.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| isepi.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| Assertion | isepi | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 𝐸 𝑌 ) ↔ ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ ∀ 𝑧 ∈ 𝐵 Fun ◡ ( 𝑔 ∈ ( 𝑌 𝐻 𝑧 ) ↦ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑧 ) 𝐹 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isepi.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 2 | isepi.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 3 | isepi.o | ⊢ · = ( comp ‘ 𝐶 ) | |
| 4 | isepi.e | ⊢ 𝐸 = ( Epi ‘ 𝐶 ) | |
| 5 | isepi.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 6 | isepi.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 7 | isepi.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 8 | eqid | ⊢ ( oppCat ‘ 𝐶 ) = ( oppCat ‘ 𝐶 ) | |
| 9 | 8 1 | oppcbas | ⊢ 𝐵 = ( Base ‘ ( oppCat ‘ 𝐶 ) ) |
| 10 | eqid | ⊢ ( Hom ‘ ( oppCat ‘ 𝐶 ) ) = ( Hom ‘ ( oppCat ‘ 𝐶 ) ) | |
| 11 | eqid | ⊢ ( comp ‘ ( oppCat ‘ 𝐶 ) ) = ( comp ‘ ( oppCat ‘ 𝐶 ) ) | |
| 12 | eqid | ⊢ ( Mono ‘ ( oppCat ‘ 𝐶 ) ) = ( Mono ‘ ( oppCat ‘ 𝐶 ) ) | |
| 13 | 8 | oppccat | ⊢ ( 𝐶 ∈ Cat → ( oppCat ‘ 𝐶 ) ∈ Cat ) |
| 14 | 5 13 | syl | ⊢ ( 𝜑 → ( oppCat ‘ 𝐶 ) ∈ Cat ) |
| 15 | 9 10 11 12 14 7 6 | ismon | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑌 ( Mono ‘ ( oppCat ‘ 𝐶 ) ) 𝑋 ) ↔ ( 𝐹 ∈ ( 𝑌 ( Hom ‘ ( oppCat ‘ 𝐶 ) ) 𝑋 ) ∧ ∀ 𝑧 ∈ 𝐵 Fun ◡ ( 𝑔 ∈ ( 𝑧 ( Hom ‘ ( oppCat ‘ 𝐶 ) ) 𝑌 ) ↦ ( 𝐹 ( 〈 𝑧 , 𝑌 〉 ( comp ‘ ( oppCat ‘ 𝐶 ) ) 𝑋 ) 𝑔 ) ) ) ) ) |
| 16 | 8 5 12 4 | oppcmon | ⊢ ( 𝜑 → ( 𝑌 ( Mono ‘ ( oppCat ‘ 𝐶 ) ) 𝑋 ) = ( 𝑋 𝐸 𝑌 ) ) |
| 17 | 16 | eleq2d | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑌 ( Mono ‘ ( oppCat ‘ 𝐶 ) ) 𝑋 ) ↔ 𝐹 ∈ ( 𝑋 𝐸 𝑌 ) ) ) |
| 18 | 2 8 | oppchom | ⊢ ( 𝑌 ( Hom ‘ ( oppCat ‘ 𝐶 ) ) 𝑋 ) = ( 𝑋 𝐻 𝑌 ) |
| 19 | 18 | a1i | ⊢ ( 𝜑 → ( 𝑌 ( Hom ‘ ( oppCat ‘ 𝐶 ) ) 𝑋 ) = ( 𝑋 𝐻 𝑌 ) ) |
| 20 | 19 | eleq2d | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑌 ( Hom ‘ ( oppCat ‘ 𝐶 ) ) 𝑋 ) ↔ 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) ) |
| 21 | 2 8 | oppchom | ⊢ ( 𝑧 ( Hom ‘ ( oppCat ‘ 𝐶 ) ) 𝑌 ) = ( 𝑌 𝐻 𝑧 ) |
| 22 | 21 | a1i | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑧 ( Hom ‘ ( oppCat ‘ 𝐶 ) ) 𝑌 ) = ( 𝑌 𝐻 𝑧 ) ) |
| 23 | simpr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → 𝑧 ∈ 𝐵 ) | |
| 24 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → 𝑌 ∈ 𝐵 ) |
| 25 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
| 26 | 1 3 8 23 24 25 | oppcco | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ( 𝐹 ( 〈 𝑧 , 𝑌 〉 ( comp ‘ ( oppCat ‘ 𝐶 ) ) 𝑋 ) 𝑔 ) = ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑧 ) 𝐹 ) ) |
| 27 | 22 26 | mpteq12dv | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑔 ∈ ( 𝑧 ( Hom ‘ ( oppCat ‘ 𝐶 ) ) 𝑌 ) ↦ ( 𝐹 ( 〈 𝑧 , 𝑌 〉 ( comp ‘ ( oppCat ‘ 𝐶 ) ) 𝑋 ) 𝑔 ) ) = ( 𝑔 ∈ ( 𝑌 𝐻 𝑧 ) ↦ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑧 ) 𝐹 ) ) ) |
| 28 | 27 | cnveqd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ◡ ( 𝑔 ∈ ( 𝑧 ( Hom ‘ ( oppCat ‘ 𝐶 ) ) 𝑌 ) ↦ ( 𝐹 ( 〈 𝑧 , 𝑌 〉 ( comp ‘ ( oppCat ‘ 𝐶 ) ) 𝑋 ) 𝑔 ) ) = ◡ ( 𝑔 ∈ ( 𝑌 𝐻 𝑧 ) ↦ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑧 ) 𝐹 ) ) ) |
| 29 | 28 | funeqd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ( Fun ◡ ( 𝑔 ∈ ( 𝑧 ( Hom ‘ ( oppCat ‘ 𝐶 ) ) 𝑌 ) ↦ ( 𝐹 ( 〈 𝑧 , 𝑌 〉 ( comp ‘ ( oppCat ‘ 𝐶 ) ) 𝑋 ) 𝑔 ) ) ↔ Fun ◡ ( 𝑔 ∈ ( 𝑌 𝐻 𝑧 ) ↦ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑧 ) 𝐹 ) ) ) ) |
| 30 | 29 | ralbidva | ⊢ ( 𝜑 → ( ∀ 𝑧 ∈ 𝐵 Fun ◡ ( 𝑔 ∈ ( 𝑧 ( Hom ‘ ( oppCat ‘ 𝐶 ) ) 𝑌 ) ↦ ( 𝐹 ( 〈 𝑧 , 𝑌 〉 ( comp ‘ ( oppCat ‘ 𝐶 ) ) 𝑋 ) 𝑔 ) ) ↔ ∀ 𝑧 ∈ 𝐵 Fun ◡ ( 𝑔 ∈ ( 𝑌 𝐻 𝑧 ) ↦ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑧 ) 𝐹 ) ) ) ) |
| 31 | 20 30 | anbi12d | ⊢ ( 𝜑 → ( ( 𝐹 ∈ ( 𝑌 ( Hom ‘ ( oppCat ‘ 𝐶 ) ) 𝑋 ) ∧ ∀ 𝑧 ∈ 𝐵 Fun ◡ ( 𝑔 ∈ ( 𝑧 ( Hom ‘ ( oppCat ‘ 𝐶 ) ) 𝑌 ) ↦ ( 𝐹 ( 〈 𝑧 , 𝑌 〉 ( comp ‘ ( oppCat ‘ 𝐶 ) ) 𝑋 ) 𝑔 ) ) ) ↔ ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ ∀ 𝑧 ∈ 𝐵 Fun ◡ ( 𝑔 ∈ ( 𝑌 𝐻 𝑧 ) ↦ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑧 ) 𝐹 ) ) ) ) ) |
| 32 | 15 17 31 | 3bitr3d | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 𝐸 𝑌 ) ↔ ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ ∀ 𝑧 ∈ 𝐵 Fun ◡ ( 𝑔 ∈ ( 𝑌 𝐻 𝑧 ) ↦ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑧 ) 𝐹 ) ) ) ) ) |