This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two categories have the same hom-sets, so do their opposites. (Contributed by Mario Carneiro, 26-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | oppchomfpropd.1 | ⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) | |
| Assertion | oppchomfpropd | ⊢ ( 𝜑 → ( Homf ‘ ( oppCat ‘ 𝐶 ) ) = ( Homf ‘ ( oppCat ‘ 𝐷 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppchomfpropd.1 | ⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) | |
| 2 | 1 | tposeqd | ⊢ ( 𝜑 → tpos ( Homf ‘ 𝐶 ) = tpos ( Homf ‘ 𝐷 ) ) |
| 3 | eqid | ⊢ ( oppCat ‘ 𝐶 ) = ( oppCat ‘ 𝐶 ) | |
| 4 | eqid | ⊢ ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐶 ) | |
| 5 | 3 4 | oppchomf | ⊢ tpos ( Homf ‘ 𝐶 ) = ( Homf ‘ ( oppCat ‘ 𝐶 ) ) |
| 6 | eqid | ⊢ ( oppCat ‘ 𝐷 ) = ( oppCat ‘ 𝐷 ) | |
| 7 | eqid | ⊢ ( Homf ‘ 𝐷 ) = ( Homf ‘ 𝐷 ) | |
| 8 | 6 7 | oppchomf | ⊢ tpos ( Homf ‘ 𝐷 ) = ( Homf ‘ ( oppCat ‘ 𝐷 ) ) |
| 9 | 2 5 8 | 3eqtr3g | ⊢ ( 𝜑 → ( Homf ‘ ( oppCat ‘ 𝐶 ) ) = ( Homf ‘ ( oppCat ‘ 𝐷 ) ) ) |