This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: oppCat restricted to Cat is a function from Cat to Cat . (Contributed by Zhi Wang, 29-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oppccatf | ⊢ ( oppCat ↾ Cat ) : Cat ⟶ Cat |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-oppc | ⊢ oppCat = ( 𝑓 ∈ V ↦ ( ( 𝑓 sSet 〈 ( Hom ‘ ndx ) , tpos ( Hom ‘ 𝑓 ) 〉 ) sSet 〈 ( comp ‘ ndx ) , ( 𝑢 ∈ ( ( Base ‘ 𝑓 ) × ( Base ‘ 𝑓 ) ) , 𝑧 ∈ ( Base ‘ 𝑓 ) ↦ tpos ( 〈 𝑧 , ( 2nd ‘ 𝑢 ) 〉 ( comp ‘ 𝑓 ) ( 1st ‘ 𝑢 ) ) ) 〉 ) ) | |
| 2 | 1 | funmpt2 | ⊢ Fun oppCat |
| 3 | ffvresb | ⊢ ( Fun oppCat → ( ( oppCat ↾ Cat ) : Cat ⟶ Cat ↔ ∀ 𝑐 ∈ Cat ( 𝑐 ∈ dom oppCat ∧ ( oppCat ‘ 𝑐 ) ∈ Cat ) ) ) | |
| 4 | 2 3 | ax-mp | ⊢ ( ( oppCat ↾ Cat ) : Cat ⟶ Cat ↔ ∀ 𝑐 ∈ Cat ( 𝑐 ∈ dom oppCat ∧ ( oppCat ‘ 𝑐 ) ∈ Cat ) ) |
| 5 | elex | ⊢ ( 𝑐 ∈ Cat → 𝑐 ∈ V ) | |
| 6 | ovex | ⊢ ( ( 𝑓 sSet 〈 ( Hom ‘ ndx ) , tpos ( Hom ‘ 𝑓 ) 〉 ) sSet 〈 ( comp ‘ ndx ) , ( 𝑢 ∈ ( ( Base ‘ 𝑓 ) × ( Base ‘ 𝑓 ) ) , 𝑧 ∈ ( Base ‘ 𝑓 ) ↦ tpos ( 〈 𝑧 , ( 2nd ‘ 𝑢 ) 〉 ( comp ‘ 𝑓 ) ( 1st ‘ 𝑢 ) ) ) 〉 ) ∈ V | |
| 7 | 6 1 | dmmpti | ⊢ dom oppCat = V |
| 8 | 5 7 | eleqtrrdi | ⊢ ( 𝑐 ∈ Cat → 𝑐 ∈ dom oppCat ) |
| 9 | eqid | ⊢ ( oppCat ‘ 𝑐 ) = ( oppCat ‘ 𝑐 ) | |
| 10 | 9 | oppccat | ⊢ ( 𝑐 ∈ Cat → ( oppCat ‘ 𝑐 ) ∈ Cat ) |
| 11 | 8 10 | jca | ⊢ ( 𝑐 ∈ Cat → ( 𝑐 ∈ dom oppCat ∧ ( oppCat ‘ 𝑐 ) ∈ Cat ) ) |
| 12 | 4 11 | mprgbir | ⊢ ( oppCat ↾ Cat ) : Cat ⟶ Cat |