This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for omsmo . (Contributed by NM, 30-Nov-2003) (Revised by David Abernethy, 1-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | omsmolem | |- ( y e. _om -> ( ( ( A C_ On /\ F : _om --> A ) /\ A. x e. _om ( F ` x ) e. ( F ` suc x ) ) -> ( z e. y -> ( F ` z ) e. ( F ` y ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 | |- ( y = (/) -> ( z e. y <-> z e. (/) ) ) |
|
| 2 | fveq2 | |- ( y = (/) -> ( F ` y ) = ( F ` (/) ) ) |
|
| 3 | 2 | eleq2d | |- ( y = (/) -> ( ( F ` z ) e. ( F ` y ) <-> ( F ` z ) e. ( F ` (/) ) ) ) |
| 4 | 1 3 | imbi12d | |- ( y = (/) -> ( ( z e. y -> ( F ` z ) e. ( F ` y ) ) <-> ( z e. (/) -> ( F ` z ) e. ( F ` (/) ) ) ) ) |
| 5 | eleq2 | |- ( y = w -> ( z e. y <-> z e. w ) ) |
|
| 6 | fveq2 | |- ( y = w -> ( F ` y ) = ( F ` w ) ) |
|
| 7 | 6 | eleq2d | |- ( y = w -> ( ( F ` z ) e. ( F ` y ) <-> ( F ` z ) e. ( F ` w ) ) ) |
| 8 | 5 7 | imbi12d | |- ( y = w -> ( ( z e. y -> ( F ` z ) e. ( F ` y ) ) <-> ( z e. w -> ( F ` z ) e. ( F ` w ) ) ) ) |
| 9 | eleq2 | |- ( y = suc w -> ( z e. y <-> z e. suc w ) ) |
|
| 10 | fveq2 | |- ( y = suc w -> ( F ` y ) = ( F ` suc w ) ) |
|
| 11 | 10 | eleq2d | |- ( y = suc w -> ( ( F ` z ) e. ( F ` y ) <-> ( F ` z ) e. ( F ` suc w ) ) ) |
| 12 | 9 11 | imbi12d | |- ( y = suc w -> ( ( z e. y -> ( F ` z ) e. ( F ` y ) ) <-> ( z e. suc w -> ( F ` z ) e. ( F ` suc w ) ) ) ) |
| 13 | noel | |- -. z e. (/) |
|
| 14 | 13 | pm2.21i | |- ( z e. (/) -> ( F ` z ) e. ( F ` (/) ) ) |
| 15 | 14 | a1i | |- ( ( ( A C_ On /\ F : _om --> A ) /\ A. x e. _om ( F ` x ) e. ( F ` suc x ) ) -> ( z e. (/) -> ( F ` z ) e. ( F ` (/) ) ) ) |
| 16 | vex | |- z e. _V |
|
| 17 | 16 | elsuc | |- ( z e. suc w <-> ( z e. w \/ z = w ) ) |
| 18 | fveq2 | |- ( x = w -> ( F ` x ) = ( F ` w ) ) |
|
| 19 | suceq | |- ( x = w -> suc x = suc w ) |
|
| 20 | 19 | fveq2d | |- ( x = w -> ( F ` suc x ) = ( F ` suc w ) ) |
| 21 | 18 20 | eleq12d | |- ( x = w -> ( ( F ` x ) e. ( F ` suc x ) <-> ( F ` w ) e. ( F ` suc w ) ) ) |
| 22 | 21 | rspccva | |- ( ( A. x e. _om ( F ` x ) e. ( F ` suc x ) /\ w e. _om ) -> ( F ` w ) e. ( F ` suc w ) ) |
| 23 | 22 | adantll | |- ( ( ( ( A C_ On /\ F : _om --> A ) /\ A. x e. _om ( F ` x ) e. ( F ` suc x ) ) /\ w e. _om ) -> ( F ` w ) e. ( F ` suc w ) ) |
| 24 | peano2b | |- ( w e. _om <-> suc w e. _om ) |
|
| 25 | ffvelcdm | |- ( ( F : _om --> A /\ suc w e. _om ) -> ( F ` suc w ) e. A ) |
|
| 26 | 24 25 | sylan2b | |- ( ( F : _om --> A /\ w e. _om ) -> ( F ` suc w ) e. A ) |
| 27 | ssel | |- ( A C_ On -> ( ( F ` suc w ) e. A -> ( F ` suc w ) e. On ) ) |
|
| 28 | ontr1 | |- ( ( F ` suc w ) e. On -> ( ( ( F ` z ) e. ( F ` w ) /\ ( F ` w ) e. ( F ` suc w ) ) -> ( F ` z ) e. ( F ` suc w ) ) ) |
|
| 29 | 28 | expcomd | |- ( ( F ` suc w ) e. On -> ( ( F ` w ) e. ( F ` suc w ) -> ( ( F ` z ) e. ( F ` w ) -> ( F ` z ) e. ( F ` suc w ) ) ) ) |
| 30 | 26 27 29 | syl56 | |- ( A C_ On -> ( ( F : _om --> A /\ w e. _om ) -> ( ( F ` w ) e. ( F ` suc w ) -> ( ( F ` z ) e. ( F ` w ) -> ( F ` z ) e. ( F ` suc w ) ) ) ) ) |
| 31 | 30 | impl | |- ( ( ( A C_ On /\ F : _om --> A ) /\ w e. _om ) -> ( ( F ` w ) e. ( F ` suc w ) -> ( ( F ` z ) e. ( F ` w ) -> ( F ` z ) e. ( F ` suc w ) ) ) ) |
| 32 | 31 | adantlr | |- ( ( ( ( A C_ On /\ F : _om --> A ) /\ A. x e. _om ( F ` x ) e. ( F ` suc x ) ) /\ w e. _om ) -> ( ( F ` w ) e. ( F ` suc w ) -> ( ( F ` z ) e. ( F ` w ) -> ( F ` z ) e. ( F ` suc w ) ) ) ) |
| 33 | 23 32 | mpd | |- ( ( ( ( A C_ On /\ F : _om --> A ) /\ A. x e. _om ( F ` x ) e. ( F ` suc x ) ) /\ w e. _om ) -> ( ( F ` z ) e. ( F ` w ) -> ( F ` z ) e. ( F ` suc w ) ) ) |
| 34 | 33 | imim2d | |- ( ( ( ( A C_ On /\ F : _om --> A ) /\ A. x e. _om ( F ` x ) e. ( F ` suc x ) ) /\ w e. _om ) -> ( ( z e. w -> ( F ` z ) e. ( F ` w ) ) -> ( z e. w -> ( F ` z ) e. ( F ` suc w ) ) ) ) |
| 35 | 34 | imp | |- ( ( ( ( ( A C_ On /\ F : _om --> A ) /\ A. x e. _om ( F ` x ) e. ( F ` suc x ) ) /\ w e. _om ) /\ ( z e. w -> ( F ` z ) e. ( F ` w ) ) ) -> ( z e. w -> ( F ` z ) e. ( F ` suc w ) ) ) |
| 36 | fveq2 | |- ( z = w -> ( F ` z ) = ( F ` w ) ) |
|
| 37 | 36 | eleq1d | |- ( z = w -> ( ( F ` z ) e. ( F ` suc w ) <-> ( F ` w ) e. ( F ` suc w ) ) ) |
| 38 | 22 37 | syl5ibrcom | |- ( ( A. x e. _om ( F ` x ) e. ( F ` suc x ) /\ w e. _om ) -> ( z = w -> ( F ` z ) e. ( F ` suc w ) ) ) |
| 39 | 38 | ad4ant23 | |- ( ( ( ( ( A C_ On /\ F : _om --> A ) /\ A. x e. _om ( F ` x ) e. ( F ` suc x ) ) /\ w e. _om ) /\ ( z e. w -> ( F ` z ) e. ( F ` w ) ) ) -> ( z = w -> ( F ` z ) e. ( F ` suc w ) ) ) |
| 40 | 35 39 | jaod | |- ( ( ( ( ( A C_ On /\ F : _om --> A ) /\ A. x e. _om ( F ` x ) e. ( F ` suc x ) ) /\ w e. _om ) /\ ( z e. w -> ( F ` z ) e. ( F ` w ) ) ) -> ( ( z e. w \/ z = w ) -> ( F ` z ) e. ( F ` suc w ) ) ) |
| 41 | 17 40 | biimtrid | |- ( ( ( ( ( A C_ On /\ F : _om --> A ) /\ A. x e. _om ( F ` x ) e. ( F ` suc x ) ) /\ w e. _om ) /\ ( z e. w -> ( F ` z ) e. ( F ` w ) ) ) -> ( z e. suc w -> ( F ` z ) e. ( F ` suc w ) ) ) |
| 42 | 41 | exp31 | |- ( ( ( A C_ On /\ F : _om --> A ) /\ A. x e. _om ( F ` x ) e. ( F ` suc x ) ) -> ( w e. _om -> ( ( z e. w -> ( F ` z ) e. ( F ` w ) ) -> ( z e. suc w -> ( F ` z ) e. ( F ` suc w ) ) ) ) ) |
| 43 | 42 | com12 | |- ( w e. _om -> ( ( ( A C_ On /\ F : _om --> A ) /\ A. x e. _om ( F ` x ) e. ( F ` suc x ) ) -> ( ( z e. w -> ( F ` z ) e. ( F ` w ) ) -> ( z e. suc w -> ( F ` z ) e. ( F ` suc w ) ) ) ) ) |
| 44 | 4 8 12 15 43 | finds2 | |- ( y e. _om -> ( ( ( A C_ On /\ F : _om --> A ) /\ A. x e. _om ( F ` x ) e. ( F ` suc x ) ) -> ( z e. y -> ( F ` z ) e. ( F ` y ) ) ) ) |