This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In an ordered group, strict ordering is compatible with group addition. (Contributed by Thierry Arnoux, 3-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ogrpsublt.0 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| ogrpsublt.1 | ⊢ < = ( lt ‘ 𝐺 ) | ||
| ogrpsublt.2 | ⊢ − = ( -g ‘ 𝐺 ) | ||
| Assertion | ogrpsublt | ⊢ ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) → ( 𝑋 − 𝑍 ) < ( 𝑌 − 𝑍 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ogrpsublt.0 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | ogrpsublt.1 | ⊢ < = ( lt ‘ 𝐺 ) | |
| 3 | ogrpsublt.2 | ⊢ − = ( -g ‘ 𝐺 ) | |
| 4 | simp3 | ⊢ ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) → 𝑋 < 𝑌 ) | |
| 5 | simp1 | ⊢ ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) → 𝐺 ∈ oGrp ) | |
| 6 | simp21 | ⊢ ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) → 𝑋 ∈ 𝐵 ) | |
| 7 | simp22 | ⊢ ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) → 𝑌 ∈ 𝐵 ) | |
| 8 | eqid | ⊢ ( le ‘ 𝐺 ) = ( le ‘ 𝐺 ) | |
| 9 | 8 2 | pltval | ⊢ ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 < 𝑌 ↔ ( 𝑋 ( le ‘ 𝐺 ) 𝑌 ∧ 𝑋 ≠ 𝑌 ) ) ) |
| 10 | 5 6 7 9 | syl3anc | ⊢ ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) → ( 𝑋 < 𝑌 ↔ ( 𝑋 ( le ‘ 𝐺 ) 𝑌 ∧ 𝑋 ≠ 𝑌 ) ) ) |
| 11 | 4 10 | mpbid | ⊢ ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) → ( 𝑋 ( le ‘ 𝐺 ) 𝑌 ∧ 𝑋 ≠ 𝑌 ) ) |
| 12 | 11 | simpld | ⊢ ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) → 𝑋 ( le ‘ 𝐺 ) 𝑌 ) |
| 13 | 1 8 3 | ogrpsub | ⊢ ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 ( le ‘ 𝐺 ) 𝑌 ) → ( 𝑋 − 𝑍 ) ( le ‘ 𝐺 ) ( 𝑌 − 𝑍 ) ) |
| 14 | 12 13 | syld3an3 | ⊢ ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) → ( 𝑋 − 𝑍 ) ( le ‘ 𝐺 ) ( 𝑌 − 𝑍 ) ) |
| 15 | 11 | simprd | ⊢ ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) → 𝑋 ≠ 𝑌 ) |
| 16 | ogrpgrp | ⊢ ( 𝐺 ∈ oGrp → 𝐺 ∈ Grp ) | |
| 17 | 5 16 | syl | ⊢ ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) → 𝐺 ∈ Grp ) |
| 18 | simp23 | ⊢ ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) → 𝑍 ∈ 𝐵 ) | |
| 19 | 1 3 | grpsubrcan | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 − 𝑍 ) = ( 𝑌 − 𝑍 ) ↔ 𝑋 = 𝑌 ) ) |
| 20 | 17 6 7 18 19 | syl13anc | ⊢ ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) → ( ( 𝑋 − 𝑍 ) = ( 𝑌 − 𝑍 ) ↔ 𝑋 = 𝑌 ) ) |
| 21 | 20 | necon3bid | ⊢ ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) → ( ( 𝑋 − 𝑍 ) ≠ ( 𝑌 − 𝑍 ) ↔ 𝑋 ≠ 𝑌 ) ) |
| 22 | 15 21 | mpbird | ⊢ ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) → ( 𝑋 − 𝑍 ) ≠ ( 𝑌 − 𝑍 ) ) |
| 23 | 1 3 | grpsubcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑋 − 𝑍 ) ∈ 𝐵 ) |
| 24 | 17 6 18 23 | syl3anc | ⊢ ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) → ( 𝑋 − 𝑍 ) ∈ 𝐵 ) |
| 25 | 1 3 | grpsubcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑌 − 𝑍 ) ∈ 𝐵 ) |
| 26 | 17 7 18 25 | syl3anc | ⊢ ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) → ( 𝑌 − 𝑍 ) ∈ 𝐵 ) |
| 27 | 8 2 | pltval | ⊢ ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 − 𝑍 ) ∈ 𝐵 ∧ ( 𝑌 − 𝑍 ) ∈ 𝐵 ) → ( ( 𝑋 − 𝑍 ) < ( 𝑌 − 𝑍 ) ↔ ( ( 𝑋 − 𝑍 ) ( le ‘ 𝐺 ) ( 𝑌 − 𝑍 ) ∧ ( 𝑋 − 𝑍 ) ≠ ( 𝑌 − 𝑍 ) ) ) ) |
| 28 | 5 24 26 27 | syl3anc | ⊢ ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) → ( ( 𝑋 − 𝑍 ) < ( 𝑌 − 𝑍 ) ↔ ( ( 𝑋 − 𝑍 ) ( le ‘ 𝐺 ) ( 𝑌 − 𝑍 ) ∧ ( 𝑋 − 𝑍 ) ≠ ( 𝑌 − 𝑍 ) ) ) ) |
| 29 | 14 22 28 | mpbir2and | ⊢ ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) → ( 𝑋 − 𝑍 ) < ( 𝑌 − 𝑍 ) ) |