This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In an ordered group, the ordering is compatible with group inverse. (Contributed by Thierry Arnoux, 3-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ogrpinvlt.0 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| ogrpinvlt.1 | ⊢ < = ( lt ‘ 𝐺 ) | ||
| ogrpinvlt.2 | ⊢ 𝐼 = ( invg ‘ 𝐺 ) | ||
| ogrpinv0lt.3 | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| Assertion | ogrpinv0lt | ⊢ ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) → ( 0 < 𝑋 ↔ ( 𝐼 ‘ 𝑋 ) < 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ogrpinvlt.0 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | ogrpinvlt.1 | ⊢ < = ( lt ‘ 𝐺 ) | |
| 3 | ogrpinvlt.2 | ⊢ 𝐼 = ( invg ‘ 𝐺 ) | |
| 4 | ogrpinv0lt.3 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 5 | simpll | ⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ 0 < 𝑋 ) → 𝐺 ∈ oGrp ) | |
| 6 | ogrpgrp | ⊢ ( 𝐺 ∈ oGrp → 𝐺 ∈ Grp ) | |
| 7 | 5 6 | syl | ⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ 0 < 𝑋 ) → 𝐺 ∈ Grp ) |
| 8 | 1 4 | grpidcl | ⊢ ( 𝐺 ∈ Grp → 0 ∈ 𝐵 ) |
| 9 | 7 8 | syl | ⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ 0 < 𝑋 ) → 0 ∈ 𝐵 ) |
| 10 | simplr | ⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ 0 < 𝑋 ) → 𝑋 ∈ 𝐵 ) | |
| 11 | 1 3 | grpinvcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) |
| 12 | 7 10 11 | syl2anc | ⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ 0 < 𝑋 ) → ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) |
| 13 | simpr | ⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ 0 < 𝑋 ) → 0 < 𝑋 ) | |
| 14 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 15 | 1 2 14 | ogrpaddlt | ⊢ ( ( 𝐺 ∈ oGrp ∧ ( 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) ∧ 0 < 𝑋 ) → ( 0 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) < ( 𝑋 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) ) |
| 16 | 5 9 10 12 13 15 | syl131anc | ⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ 0 < 𝑋 ) → ( 0 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) < ( 𝑋 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) ) |
| 17 | 1 14 4 | grplid | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) → ( 0 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ 𝑋 ) ) |
| 18 | 7 12 17 | syl2anc | ⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ 0 < 𝑋 ) → ( 0 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ 𝑋 ) ) |
| 19 | 1 14 4 3 | grprinv | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) = 0 ) |
| 20 | 7 10 19 | syl2anc | ⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ 0 < 𝑋 ) → ( 𝑋 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) = 0 ) |
| 21 | 16 18 20 | 3brtr3d | ⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ 0 < 𝑋 ) → ( 𝐼 ‘ 𝑋 ) < 0 ) |
| 22 | simpll | ⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝐼 ‘ 𝑋 ) < 0 ) → 𝐺 ∈ oGrp ) | |
| 23 | 22 6 | syl | ⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝐼 ‘ 𝑋 ) < 0 ) → 𝐺 ∈ Grp ) |
| 24 | simplr | ⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝐼 ‘ 𝑋 ) < 0 ) → 𝑋 ∈ 𝐵 ) | |
| 25 | 23 24 11 | syl2anc | ⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝐼 ‘ 𝑋 ) < 0 ) → ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) |
| 26 | 22 6 8 | 3syl | ⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝐼 ‘ 𝑋 ) < 0 ) → 0 ∈ 𝐵 ) |
| 27 | simpr | ⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝐼 ‘ 𝑋 ) < 0 ) → ( 𝐼 ‘ 𝑋 ) < 0 ) | |
| 28 | 1 2 14 | ogrpaddlt | ⊢ ( ( 𝐺 ∈ oGrp ∧ ( ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ∧ 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝐼 ‘ 𝑋 ) < 0 ) → ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑋 ) < ( 0 ( +g ‘ 𝐺 ) 𝑋 ) ) |
| 29 | 22 25 26 24 27 28 | syl131anc | ⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝐼 ‘ 𝑋 ) < 0 ) → ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑋 ) < ( 0 ( +g ‘ 𝐺 ) 𝑋 ) ) |
| 30 | 1 14 4 3 | grplinv | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑋 ) = 0 ) |
| 31 | 23 24 30 | syl2anc | ⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝐼 ‘ 𝑋 ) < 0 ) → ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑋 ) = 0 ) |
| 32 | 1 14 4 | grplid | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 0 ( +g ‘ 𝐺 ) 𝑋 ) = 𝑋 ) |
| 33 | 23 24 32 | syl2anc | ⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝐼 ‘ 𝑋 ) < 0 ) → ( 0 ( +g ‘ 𝐺 ) 𝑋 ) = 𝑋 ) |
| 34 | 29 31 33 | 3brtr3d | ⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝐼 ‘ 𝑋 ) < 0 ) → 0 < 𝑋 ) |
| 35 | 21 34 | impbida | ⊢ ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) → ( 0 < 𝑋 ↔ ( 𝐼 ‘ 𝑋 ) < 0 ) ) |