This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Right cancellation law for group subtraction. (Contributed by NM, 31-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpsubcl.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| grpsubcl.m | ⊢ − = ( -g ‘ 𝐺 ) | ||
| Assertion | grpsubrcan | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 − 𝑍 ) = ( 𝑌 − 𝑍 ) ↔ 𝑋 = 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpsubcl.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | grpsubcl.m | ⊢ − = ( -g ‘ 𝐺 ) | |
| 3 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 4 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 5 | 1 3 4 2 | grpsubval | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑋 − 𝑍 ) = ( 𝑋 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) ) |
| 6 | 5 | 3adant2 | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑋 − 𝑍 ) = ( 𝑋 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) ) |
| 7 | 1 3 4 2 | grpsubval | ⊢ ( ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑌 − 𝑍 ) = ( 𝑌 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) ) |
| 8 | 7 | 3adant1 | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑌 − 𝑍 ) = ( 𝑌 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) ) |
| 9 | 6 8 | eqeq12d | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( ( 𝑋 − 𝑍 ) = ( 𝑌 − 𝑍 ) ↔ ( 𝑋 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) = ( 𝑌 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) ) ) |
| 10 | 9 | adantl | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 − 𝑍 ) = ( 𝑌 − 𝑍 ) ↔ ( 𝑋 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) = ( 𝑌 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) ) ) |
| 11 | simpl | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝐺 ∈ Grp ) | |
| 12 | simpr1 | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑋 ∈ 𝐵 ) | |
| 13 | simpr2 | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑌 ∈ 𝐵 ) | |
| 14 | 1 4 | grpinvcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑍 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ∈ 𝐵 ) |
| 15 | 14 | 3ad2antr3 | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ∈ 𝐵 ) |
| 16 | 1 3 | grprcan | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ∈ 𝐵 ) ) → ( ( 𝑋 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) = ( 𝑌 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) ↔ 𝑋 = 𝑌 ) ) |
| 17 | 11 12 13 15 16 | syl13anc | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) = ( 𝑌 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) ↔ 𝑋 = 𝑌 ) ) |
| 18 | 10 17 | bitrd | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 − 𝑍 ) = ( 𝑌 − 𝑍 ) ↔ 𝑋 = 𝑌 ) ) |