This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In an ordered group, the ordering is compatible with group inverse. (Contributed by Thierry Arnoux, 3-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ogrpinvlt.0 | |- B = ( Base ` G ) |
|
| ogrpinvlt.1 | |- .< = ( lt ` G ) |
||
| ogrpinvlt.2 | |- I = ( invg ` G ) |
||
| ogrpinv0lt.3 | |- .0. = ( 0g ` G ) |
||
| Assertion | ogrpinv0lt | |- ( ( G e. oGrp /\ X e. B ) -> ( .0. .< X <-> ( I ` X ) .< .0. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ogrpinvlt.0 | |- B = ( Base ` G ) |
|
| 2 | ogrpinvlt.1 | |- .< = ( lt ` G ) |
|
| 3 | ogrpinvlt.2 | |- I = ( invg ` G ) |
|
| 4 | ogrpinv0lt.3 | |- .0. = ( 0g ` G ) |
|
| 5 | simpll | |- ( ( ( G e. oGrp /\ X e. B ) /\ .0. .< X ) -> G e. oGrp ) |
|
| 6 | ogrpgrp | |- ( G e. oGrp -> G e. Grp ) |
|
| 7 | 5 6 | syl | |- ( ( ( G e. oGrp /\ X e. B ) /\ .0. .< X ) -> G e. Grp ) |
| 8 | 1 4 | grpidcl | |- ( G e. Grp -> .0. e. B ) |
| 9 | 7 8 | syl | |- ( ( ( G e. oGrp /\ X e. B ) /\ .0. .< X ) -> .0. e. B ) |
| 10 | simplr | |- ( ( ( G e. oGrp /\ X e. B ) /\ .0. .< X ) -> X e. B ) |
|
| 11 | 1 3 | grpinvcl | |- ( ( G e. Grp /\ X e. B ) -> ( I ` X ) e. B ) |
| 12 | 7 10 11 | syl2anc | |- ( ( ( G e. oGrp /\ X e. B ) /\ .0. .< X ) -> ( I ` X ) e. B ) |
| 13 | simpr | |- ( ( ( G e. oGrp /\ X e. B ) /\ .0. .< X ) -> .0. .< X ) |
|
| 14 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 15 | 1 2 14 | ogrpaddlt | |- ( ( G e. oGrp /\ ( .0. e. B /\ X e. B /\ ( I ` X ) e. B ) /\ .0. .< X ) -> ( .0. ( +g ` G ) ( I ` X ) ) .< ( X ( +g ` G ) ( I ` X ) ) ) |
| 16 | 5 9 10 12 13 15 | syl131anc | |- ( ( ( G e. oGrp /\ X e. B ) /\ .0. .< X ) -> ( .0. ( +g ` G ) ( I ` X ) ) .< ( X ( +g ` G ) ( I ` X ) ) ) |
| 17 | 1 14 4 | grplid | |- ( ( G e. Grp /\ ( I ` X ) e. B ) -> ( .0. ( +g ` G ) ( I ` X ) ) = ( I ` X ) ) |
| 18 | 7 12 17 | syl2anc | |- ( ( ( G e. oGrp /\ X e. B ) /\ .0. .< X ) -> ( .0. ( +g ` G ) ( I ` X ) ) = ( I ` X ) ) |
| 19 | 1 14 4 3 | grprinv | |- ( ( G e. Grp /\ X e. B ) -> ( X ( +g ` G ) ( I ` X ) ) = .0. ) |
| 20 | 7 10 19 | syl2anc | |- ( ( ( G e. oGrp /\ X e. B ) /\ .0. .< X ) -> ( X ( +g ` G ) ( I ` X ) ) = .0. ) |
| 21 | 16 18 20 | 3brtr3d | |- ( ( ( G e. oGrp /\ X e. B ) /\ .0. .< X ) -> ( I ` X ) .< .0. ) |
| 22 | simpll | |- ( ( ( G e. oGrp /\ X e. B ) /\ ( I ` X ) .< .0. ) -> G e. oGrp ) |
|
| 23 | 22 6 | syl | |- ( ( ( G e. oGrp /\ X e. B ) /\ ( I ` X ) .< .0. ) -> G e. Grp ) |
| 24 | simplr | |- ( ( ( G e. oGrp /\ X e. B ) /\ ( I ` X ) .< .0. ) -> X e. B ) |
|
| 25 | 23 24 11 | syl2anc | |- ( ( ( G e. oGrp /\ X e. B ) /\ ( I ` X ) .< .0. ) -> ( I ` X ) e. B ) |
| 26 | 22 6 8 | 3syl | |- ( ( ( G e. oGrp /\ X e. B ) /\ ( I ` X ) .< .0. ) -> .0. e. B ) |
| 27 | simpr | |- ( ( ( G e. oGrp /\ X e. B ) /\ ( I ` X ) .< .0. ) -> ( I ` X ) .< .0. ) |
|
| 28 | 1 2 14 | ogrpaddlt | |- ( ( G e. oGrp /\ ( ( I ` X ) e. B /\ .0. e. B /\ X e. B ) /\ ( I ` X ) .< .0. ) -> ( ( I ` X ) ( +g ` G ) X ) .< ( .0. ( +g ` G ) X ) ) |
| 29 | 22 25 26 24 27 28 | syl131anc | |- ( ( ( G e. oGrp /\ X e. B ) /\ ( I ` X ) .< .0. ) -> ( ( I ` X ) ( +g ` G ) X ) .< ( .0. ( +g ` G ) X ) ) |
| 30 | 1 14 4 3 | grplinv | |- ( ( G e. Grp /\ X e. B ) -> ( ( I ` X ) ( +g ` G ) X ) = .0. ) |
| 31 | 23 24 30 | syl2anc | |- ( ( ( G e. oGrp /\ X e. B ) /\ ( I ` X ) .< .0. ) -> ( ( I ` X ) ( +g ` G ) X ) = .0. ) |
| 32 | 1 14 4 | grplid | |- ( ( G e. Grp /\ X e. B ) -> ( .0. ( +g ` G ) X ) = X ) |
| 33 | 23 24 32 | syl2anc | |- ( ( ( G e. oGrp /\ X e. B ) /\ ( I ` X ) .< .0. ) -> ( .0. ( +g ` G ) X ) = X ) |
| 34 | 29 31 33 | 3brtr3d | |- ( ( ( G e. oGrp /\ X e. B ) /\ ( I ` X ) .< .0. ) -> .0. .< X ) |
| 35 | 21 34 | impbida | |- ( ( G e. oGrp /\ X e. B ) -> ( .0. .< X <-> ( I ` X ) .< .0. ) ) |